1
0
mirror of https://github.com/fafhrd91/actix-net synced 2024-12-04 20:31:56 +01:00
actix-net/actix-rt/src/builder.rs

184 lines
5.3 KiB
Rust
Raw Normal View History

2018-12-10 04:55:40 +01:00
use std::borrow::Cow;
use std::io;
use futures::future::{lazy, Future};
use futures::sync::mpsc::unbounded;
use futures::sync::oneshot::{channel, Receiver};
use tokio_current_thread::CurrentThread;
use tokio_reactor::Reactor;
use tokio_timer::clock::Clock;
use tokio_timer::timer::Timer;
use crate::arbiter::{Arbiter, SystemArbiter};
use crate::runtime::Runtime;
use crate::system::System;
/// Builder struct for a actix runtime.
///
/// Either use `Builder::build` to create a system and start actors.
/// Alternatively, use `Builder::run` to start the tokio runtime and
/// run a function in its context.
pub struct Builder {
/// Name of the System. Defaults to "actix" if unset.
name: Cow<'static, str>,
/// The clock to use
clock: Clock,
/// Whether the Arbiter will stop the whole System on uncaught panic. Defaults to false.
stop_on_panic: bool,
}
impl Builder {
pub(crate) fn new() -> Self {
Builder {
name: Cow::Borrowed("actix"),
clock: Clock::new(),
stop_on_panic: false,
}
}
/// Sets the name of the System.
pub fn name<T: Into<String>>(mut self, name: T) -> Self {
self.name = Cow::Owned(name.into());
self
}
/// Set the Clock instance that will be used by this System.
///
/// Defaults to the system clock.
pub fn clock(mut self, clock: Clock) -> Self {
self.clock = clock;
self
}
/// Sets the option 'stop_on_panic' which controls whether the System is stopped when an
/// uncaught panic is thrown from a worker thread.
///
/// Defaults to false.
pub fn stop_on_panic(mut self, stop_on_panic: bool) -> Self {
self.stop_on_panic = stop_on_panic;
self
}
/// Create new System.
///
/// This method panics if it can not create tokio runtime
pub fn build(self) -> SystemRunner {
self.create_runtime(|| {})
}
/// This function will start tokio runtime and will finish once the
/// `System::stop()` message get called.
/// Function `f` get called within tokio runtime context.
pub fn run<F>(self, f: F) -> io::Result<()>
2018-12-10 04:55:40 +01:00
where
F: FnOnce() + 'static,
{
self.create_runtime(f).run()
}
fn create_runtime<F>(self, f: F) -> SystemRunner
where
F: FnOnce() + 'static,
{
let (stop_tx, stop) = channel();
let (sys_sender, sys_receiver) = unbounded();
let system = System::construct(sys_sender, Arbiter::new_system(), self.stop_on_panic);
2018-12-10 04:55:40 +01:00
// system arbiter
let arb = SystemArbiter::new(stop_tx, sys_receiver);
let mut rt = self.build_rt().unwrap();
rt.spawn(arb);
// init system arbiter and run configuration method
let _ = rt.block_on(lazy(move || {
f();
Ok::<_, ()>(())
}));
SystemRunner { rt, stop, system }
}
pub(crate) fn build_rt(&self) -> io::Result<Runtime> {
// We need a reactor to receive events about IO objects from kernel
let reactor = Reactor::new()?;
let reactor_handle = reactor.handle();
// Place a timer wheel on top of the reactor. If there are no timeouts to fire, it'll let the
// reactor pick up some new external events.
let timer = Timer::new_with_now(reactor, self.clock.clone());
let timer_handle = timer.handle();
// And now put a single-threaded executor on top of the timer. When there are no futures ready
// to do something, it'll let the timer or the reactor to generate some new stimuli for the
// futures to continue in their life.
let executor = CurrentThread::new_with_park(timer);
Ok(Runtime::new2(
reactor_handle,
timer_handle,
self.clock.clone(),
executor,
))
}
}
/// Helper object that runs System's event loop
#[must_use = "SystemRunner must be run"]
#[derive(Debug)]
pub struct SystemRunner {
rt: Runtime,
stop: Receiver<i32>,
system: System,
}
impl SystemRunner {
/// This function will start event loop and will finish once the
/// `System::stop()` function is called.
pub fn run(self) -> io::Result<()> {
2018-12-10 04:55:40 +01:00
let SystemRunner { mut rt, stop, .. } = self;
// run loop
let _ = rt.block_on(lazy(move || {
Arbiter::run_system();
Ok::<_, ()>(())
}));
let result = match rt.block_on(stop) {
Ok(code) => {
if code != 0 {
Err(io::Error::new(
io::ErrorKind::Other,
format!("Non-zero exit code: {}", code),
))
} else {
Ok(())
}
}
Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
2018-12-10 04:55:40 +01:00
};
Arbiter::stop_system();
result
2018-12-10 04:55:40 +01:00
}
/// Execute a future and wait for result.
pub fn block_on<F, I, E>(&mut self, fut: F) -> Result<I, E>
where
F: Future<Item = I, Error = E>,
{
let _ = self.rt.block_on(lazy(move || {
Arbiter::run_system();
Ok::<_, ()>(())
}));
let res = self.rt.block_on(fut);
let _ = self.rt.block_on(lazy(move || {
Arbiter::stop_system();
Ok::<_, ()>(())
}));
res
}
}