1
0
mirror of https://github.com/fafhrd91/actix-net synced 2025-06-27 06:09:02 +02:00

prepare rt v2.0.0-beta.3

This commit is contained in:
Rob Ede
2021-01-31 05:19:30 +00:00
parent 0b656f51e1
commit 057e7cd7c9
4 changed files with 48 additions and 2 deletions

View File

@ -1,4 +1,37 @@
//! Tokio-based single-thread async runtime for the Actix ecosystem.
//!
//! In most parts of the the Actix ecosystem, it has been chosen to use !Send futures. For this
//! reason, a single-threaded runtime is appropriate since it is guaranteed that futures will not
//! be moved between threads. This can result in small performance improvements over cases where
//! atomics would otherwise be needed.
//!
//! To achieve similar performance to multi-threaded, work-stealing runtimes, applications
//! using `actix-rt` will create multiple, mostly disconnected, single-threaded runtimes.
//! This approach has good performance characteristics for workloads where the majority of tasks
//! have similar runtime expense.
//!
//! The disadvantage is that idle threads will not steal work from very busy, stuck or otherwise
//! backlogged threads. Tasks that are disproportionately expensive should be offloaded to the
//! blocking thread-pool using [`task::spawn_blocking`].
//!
//! # Examples
//! ```
//! use std::sync::mpsc;
//! use actix_rt::{Arbiter, System};
//!
//! let _ = System::new();
//!
//! let (tx, rx) = mpsc::channel::<u32>();
//!
//! let arbiter = Arbiter::new();
//! arbiter.spawn_fn(move || tx.send(42).unwrap());
//!
//! let num = rx.recv().unwrap();
//! assert_eq!(num, 42);
//!
//! arbiter.stop();
//! arbiter.join().unwrap();
//! ```
#![deny(rust_2018_idioms, nonstandard_style)]
#![allow(clippy::type_complexity)]