1
0
mirror of https://github.com/fafhrd91/actix-net synced 2024-11-24 00:01:11 +01:00

remove unused code

This commit is contained in:
Nikolay Kim 2018-12-09 15:21:23 -08:00
parent e50be58fdb
commit 227ea15683
2 changed files with 0 additions and 317 deletions

View File

@ -1,313 +0,0 @@
#![allow(deprecated)]
use std::fmt;
use std::io::{self, Read, Write};
use bytes::BytesMut;
use futures::{Poll, Sink, StartSend, Stream};
use tokio_codec::{Decoder, Encoder};
use tokio_io::{AsyncRead, AsyncWrite};
use super::framed_read::{framed_read2, framed_read2_with_buffer, FramedRead2};
use super::framed_write::{framed_write2, framed_write2_with_buffer, FramedWrite2};
/// A unified `Stream` and `Sink` interface to an underlying I/O object, using
/// the `Encoder` and `Decoder` traits to encode and decode frames.
///
/// You can create a `Framed` instance by using the `AsyncRead::framed` adapter.
pub struct Framed2<T, D, E> {
inner: FramedRead2<FramedWrite2<Fuse2<T, D, E>>>,
}
pub struct Fuse2<T, D, E>(pub T, pub D, pub E);
impl<T, D, E> Framed2<T, D, E>
where
T: AsyncRead + AsyncWrite,
D: Decoder,
E: Encoder,
{
/// Provides a `Stream` and `Sink` interface for reading and writing to this
/// `Io` object, using `Decode` and `Encode` to read and write the raw data.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the `Codec`
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both `Stream` and
/// `Sink`; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// If you want to work more directly with the streams and sink, consider
/// calling `split` on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
pub fn new(inner: T, decoder: D, encoder: E) -> Framed2<T, D, E> {
Framed2 {
inner: framed_read2(framed_write2(Fuse2(inner, decoder, encoder))),
}
}
}
impl<T, D, E> Framed2<T, D, E> {
/// Provides a `Stream` and `Sink` interface for reading and writing to this
/// `Io` object, using `Decode` and `Encode` to read and write the raw data.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the `Codec`
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both `Stream` and
/// `Sink`; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// This objects takes a stream and a readbuffer and a writebuffer. These
/// field can be obtained from an existing `Framed` with the
/// `into_parts` method.
///
/// If you want to work more directly with the streams and sink, consider
/// calling `split` on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
pub fn from_parts(parts: FramedParts2<T, D, E>) -> Framed2<T, D, E> {
Framed2 {
inner: framed_read2_with_buffer(
framed_write2_with_buffer(
Fuse2(parts.io, parts.decoder, parts.encoder),
parts.write_buf,
),
parts.read_buf,
),
}
}
/// Returns a reference to the underlying I/O stream wrapped by
/// `Frame`.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn get_ref(&self) -> &T {
&self.inner.get_ref().get_ref().0
}
/// Returns a mutable reference to the underlying I/O stream wrapped by
/// `Frame`.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner.get_mut().get_mut().0
}
/// Returns a reference to the underlying decoder.
pub fn decocer(&self) -> &D {
&self.inner.get_ref().get_ref().1
}
/// Returns a mutable reference to the underlying decoder.
pub fn decoder_mut(&mut self) -> &mut D {
&mut self.inner.get_mut().get_mut().1
}
/// Returns a reference to the underlying encoder.
pub fn encoder(&self) -> &E {
&self.inner.get_ref().get_ref().2
}
/// Returns a mutable reference to the underlying codec.
pub fn encoder_mut(&mut self) -> &mut E {
&mut self.inner.get_mut().get_mut().2
}
/// Consumes the `Frame`, returning its underlying I/O stream.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn into_inner(self) -> T {
self.inner.into_inner().into_inner().0
}
/// Consume the `Frame`, returning `Frame` with different codec.
pub fn switch_encoder<E2>(self, encoder: E2) -> Framed2<T, D, E2> {
let (inner, read_buf) = self.inner.into_parts();
let (inner, write_buf) = inner.into_parts();
Framed2 {
inner: framed_read2_with_buffer(
framed_write2_with_buffer(Fuse2(inner.0, inner.1, encoder), write_buf),
read_buf,
),
}
}
/// Consumes the `Frame`, returning its underlying I/O stream, the buffer
/// with unprocessed data, and the codec.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn into_parts(self) -> FramedParts2<T, D, E> {
let (inner, read_buf) = self.inner.into_parts();
let (inner, write_buf) = inner.into_parts();
FramedParts2 {
io: inner.0,
decoder: inner.1,
encoder: inner.2,
read_buf: read_buf,
write_buf: write_buf,
_priv: (),
}
}
}
impl<T, D, E> Stream for Framed2<T, D, E>
where
T: AsyncRead,
D: Decoder,
{
type Item = D::Item;
type Error = D::Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.inner.poll()
}
}
impl<T, D, E> Sink for Framed2<T, D, E>
where
T: AsyncWrite,
E: Encoder,
E::Error: From<io::Error>,
{
type SinkItem = E::Item;
type SinkError = E::Error;
fn start_send(
&mut self,
item: Self::SinkItem,
) -> StartSend<Self::SinkItem, Self::SinkError> {
self.inner.get_mut().start_send(item)
}
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.inner.get_mut().poll_complete()
}
fn close(&mut self) -> Poll<(), Self::SinkError> {
self.inner.get_mut().close()
}
}
impl<T, D, E> fmt::Debug for Framed2<T, D, E>
where
T: fmt::Debug,
D: fmt::Debug,
E: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Framed2")
.field("io", &self.inner.get_ref().get_ref().0)
.field("decoder", &self.inner.get_ref().get_ref().1)
.field("encoder", &self.inner.get_ref().get_ref().2)
.finish()
}
}
// ===== impl Fuse2 =====
impl<T: Read, D, E> Read for Fuse2<T, D, E> {
fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
self.0.read(dst)
}
}
impl<T: AsyncRead, D, E> AsyncRead for Fuse2<T, D, E> {
unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [u8]) -> bool {
self.0.prepare_uninitialized_buffer(buf)
}
}
impl<T: Write, D, E> Write for Fuse2<T, D, E> {
fn write(&mut self, src: &[u8]) -> io::Result<usize> {
self.0.write(src)
}
fn flush(&mut self) -> io::Result<()> {
self.0.flush()
}
}
impl<T: AsyncWrite, D, E> AsyncWrite for Fuse2<T, D, E> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.0.shutdown()
}
}
impl<T, D: Decoder, E> Decoder for Fuse2<T, D, E> {
type Item = D::Item;
type Error = D::Error;
fn decode(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.1.decode(buffer)
}
fn decode_eof(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.1.decode_eof(buffer)
}
}
impl<T, D, E: Encoder> Encoder for Fuse2<T, D, E> {
type Item = E::Item;
type Error = E::Error;
fn encode(&mut self, item: Self::Item, dst: &mut BytesMut) -> Result<(), Self::Error> {
self.2.encode(item, dst)
}
}
/// `FramedParts` contains an export of the data of a Framed transport.
/// It can be used to construct a new `Framed` with a different codec.
/// It contains all current buffers and the inner transport.
#[derive(Debug)]
pub struct FramedParts2<T, D, E> {
/// The inner transport used to read bytes to and write bytes to
pub io: T,
/// The decoder
pub decoder: D,
/// The encoder
pub encoder: E,
/// The buffer with read but unprocessed data.
pub read_buf: BytesMut,
/// A buffer with unprocessed data which are not written yet.
pub write_buf: BytesMut,
/// This private field allows us to add additional fields in the future in a
/// backwards compatible way.
_priv: (),
}
impl<T, D, E> FramedParts2<T, D, E> {
/// Create a new, default, `FramedParts`
pub fn new(io: T, decoder: D, encoder: E) -> FramedParts2<T, D, E> {
FramedParts2 {
io,
decoder,
encoder,
read_buf: BytesMut::new(),
write_buf: BytesMut::new(),
_priv: (),
}
}
}

View File

@ -10,17 +10,13 @@
//! [`Stream`]: #
//! [transports]: #
// #![deny(missing_docs, missing_debug_implementations, warnings)]
mod bcodec;
mod framed;
// mod framed2;
mod framed_read;
mod framed_write;
pub use self::bcodec::BytesCodec;
pub use self::framed::{Framed, FramedParts};
// pub use self::framed2::{Framed2, FramedParts2};
pub use self::framed_read::FramedRead;
pub use self::framed_write::FramedWrite;