1
0
mirror of https://github.com/fafhrd91/actix-net synced 2025-01-18 20:01:48 +01:00

add rt tests and doc tests

This commit is contained in:
Rob Ede 2021-01-26 09:46:14 +00:00
parent cff9deb729
commit 45edff625e
No known key found for this signature in database
GPG Key ID: C2A3B36E841A91E6
7 changed files with 247 additions and 159 deletions

View File

@ -23,3 +23,7 @@ macros = ["actix-macros"]
actix-macros = { version = "0.2.0-beta.1", optional = true }
tokio = { version = "1", features = ["rt", "net", "parking_lot", "signal", "sync", "time"] }
[dev-dependencies]
tokio = { version = "1", features = ["full"] }
futures-util = { version = "0.3.7", default-features = true, features = ["alloc"] }

View File

@ -1,26 +1,32 @@
use std::any::{Any, TypeId};
use std::cell::RefCell;
use std::collections::HashMap;
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::task::{Context, Poll};
use std::{fmt, thread};
use std::{
any::{Any, TypeId},
cell::RefCell,
collections::HashMap,
fmt,
future::Future,
pin::Pin,
sync::atomic::{AtomicUsize, Ordering},
task::{Context, Poll},
thread,
};
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
use tokio::sync::oneshot::{channel, error::RecvError as Canceled, Sender};
use tokio::task::LocalSet;
use tokio::{
sync::{
mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender},
oneshot::{channel, error::RecvError as Canceled, Sender},
},
task::LocalSet,
};
use crate::runtime::Runtime;
use crate::system::System;
use crate::{runtime::Runtime, system::System};
pub(crate) static COUNT: AtomicUsize = AtomicUsize::new(0);
thread_local!(
static ADDR: RefCell<Option<Arbiter>> = RefCell::new(None);
static STORAGE: RefCell<HashMap<TypeId, Box<dyn Any>>> = RefCell::new(HashMap::new());
);
pub(crate) static COUNT: AtomicUsize = AtomicUsize::new(0);
pub(crate) enum ArbiterCommand {
Stop,
Execute(Box<dyn Future<Output = ()> + Unpin + Send>),
@ -37,10 +43,10 @@ impl fmt::Debug for ArbiterCommand {
}
}
/// Arbiters provide an asynchronous execution environment for actors, functions and futures. When
/// an Arbiter is created, it spawns a new OS thread, and hosts an event loop. Some Arbiter
/// functions execute on the current thread.
#[derive(Debug)]
/// Arbiters provide an asynchronous execution environment for actors, functions
/// and futures. When an Arbiter is created, it spawns a new OS thread, and
/// hosts an event loop. Some Arbiter functions execute on the current thread.
pub struct Arbiter {
sender: UnboundedSender<ArbiterCommand>,
thread_handle: Option<thread::JoinHandle<()>>,
@ -125,7 +131,7 @@ impl Arbiter {
// unregister arbiter
let _ = System::current()
.sys()
.send(SystemCommand::UnregisterArbiter(id));
.send(SystemCommand::DeregisterArbiter(id));
}
})
.unwrap_or_else(|err| {
@ -312,7 +318,7 @@ impl Future for ArbiterController {
pub(crate) enum SystemCommand {
Exit(i32),
RegisterArbiter(usize, Arbiter),
UnregisterArbiter(usize),
DeregisterArbiter(usize),
}
#[derive(Debug)]
@ -353,7 +359,7 @@ impl Future for SystemArbiter {
SystemCommand::RegisterArbiter(name, hnd) => {
self.arbiters.insert(name, hnd);
}
SystemCommand::UnregisterArbiter(name) => {
SystemCommand::DeregisterArbiter(name) => {
self.arbiters.remove(&name);
}
},

View File

@ -1,22 +1,25 @@
use std::borrow::Cow;
use std::future::Future;
use std::io;
use std::{borrow::Cow, future::Future, io};
use tokio::sync::mpsc::unbounded_channel;
use tokio::sync::oneshot::{channel, Receiver};
use tokio::task::LocalSet;
use tokio::{
sync::{
mpsc::unbounded_channel,
oneshot::{channel, Receiver},
},
task::LocalSet,
};
use crate::arbiter::{Arbiter, SystemArbiter};
use crate::runtime::Runtime;
use crate::system::System;
use crate::{
arbiter::{Arbiter, SystemArbiter},
runtime::Runtime,
system::System,
};
/// Builder struct for a actix runtime.
/// Builder an actix runtime.
///
/// Either use `Builder::build` to create a system and start actors.
/// Alternatively, use `Builder::run` to start the tokio runtime and
/// run a function in its context.
/// Either use `Builder::build` to create a system and start actors. Alternatively, use
/// `Builder::run` to start the Tokio runtime and run a function in its context.
pub struct Builder {
/// Name of the System. Defaults to "actix" if unset.
/// Name of the System. Defaults to "actix-rt" if unset.
name: Cow<'static, str>,
/// Whether the Arbiter will stop the whole System on uncaught panic. Defaults to false.
@ -26,13 +29,13 @@ pub struct Builder {
impl Builder {
pub(crate) fn new() -> Self {
Builder {
name: Cow::Borrowed("actix"),
name: Cow::Borrowed("actix-rt"),
stop_on_panic: false,
}
}
/// Sets the name of the System.
pub fn name<T: Into<String>>(mut self, name: T) -> Self {
pub fn name(mut self, name: impl Into<String>) -> Self {
self.name = Cow::Owned(name.into());
self
}
@ -48,7 +51,7 @@ impl Builder {
/// Create new System.
///
/// This method panics if it can not create tokio runtime
/// This method panics if it can not create Tokio runtime
pub fn build(self) -> SystemRunner {
self.create_runtime(|| {})
}
@ -60,9 +63,8 @@ impl Builder {
self.create_async_runtime(local)
}
/// This function will start tokio runtime and will finish once the
/// `System::stop()` message get called.
/// Function `f` get called within tokio runtime context.
/// This function will start Tokio runtime and will finish once the `System::stop()` message
/// is called. Function `f` is called within Tokio runtime context.
pub fn run<F>(self, f: F) -> io::Result<()>
where
F: FnOnce(),
@ -71,7 +73,7 @@ impl Builder {
}
fn create_async_runtime(self, local: &LocalSet) -> AsyncSystemRunner {
let (stop_tx, stop) = channel();
let (stop_tx, stop_rx) = channel();
let (sys_sender, sys_receiver) = unbounded_channel();
let system =
@ -83,7 +85,7 @@ impl Builder {
// start the system arbiter
let _ = local.spawn_local(arb);
AsyncSystemRunner { stop, system }
AsyncSystemRunner { system, stop_rx }
}
fn create_runtime<F>(self, f: F) -> SystemRunner
@ -115,18 +117,17 @@ impl Builder {
#[derive(Debug)]
pub(crate) struct AsyncSystemRunner {
stop: Receiver<i32>,
system: System,
stop_rx: Receiver<i32>,
}
impl AsyncSystemRunner {
/// This function will start event loop and returns a future that
/// resolves once the `System::stop()` function is called.
pub(crate) fn run_nonblocking(self) -> impl Future<Output = Result<(), io::Error>> + Send {
let AsyncSystemRunner { stop, .. } = self;
/// This function will start event loop and returns a future that resolves once the
/// `System::stop()` function is called.
pub(crate) async fn run(self) -> Result<(), io::Error> {
let AsyncSystemRunner { stop_rx: stop, .. } = self;
// run loop
async {
match stop.await {
Ok(code) => {
if code != 0 {
@ -142,7 +143,6 @@ impl AsyncSystemRunner {
}
}
}
}
/// Helper object that runs System's event loop
#[must_use = "SystemRunner must be run"]

View File

@ -2,6 +2,7 @@
#![deny(rust_2018_idioms, nonstandard_style)]
#![allow(clippy::type_complexity)]
#![warn(missing_docs)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
@ -25,7 +26,6 @@ pub use self::system::System;
/// Spawns a future on the current arbiter.
///
/// # Panics
///
/// This function panics if actix system is not running.
#[inline]
pub fn spawn<F>(f: F)
@ -39,13 +39,15 @@ where
pub mod signal {
#[cfg(unix)]
pub mod unix {
//! Unix specific signals.
pub use tokio::signal::unix::*;
}
pub use tokio::signal::ctrl_c;
}
/// TCP/UDP/Unix bindings
pub mod net {
//! TCP/UDP/Unix bindings
pub use tokio::net::UdpSocket;
pub use tokio::net::{TcpListener, TcpStream};
@ -58,15 +60,17 @@ pub mod net {
pub use self::unix::*;
}
/// Utilities for tracking time.
pub mod time {
//! Utilities for tracking time.
pub use tokio::time::Instant;
pub use tokio::time::{interval, interval_at, Interval};
pub use tokio::time::{sleep, sleep_until, Sleep};
pub use tokio::time::{timeout, Timeout};
}
/// Task management.
pub mod task {
//! Task management.
pub use tokio::task::{spawn_blocking, yield_now, JoinHandle};
}

View File

@ -1,24 +1,21 @@
use std::future::Future;
use std::io;
use tokio::{runtime, task::LocalSet};
use std::{future::Future, io};
/// Single-threaded runtime provides a way to start reactor
/// and runtime on the current thread.
use tokio::task::{JoinHandle, LocalSet};
/// Single-threaded runtime provides a way to start reactor and runtime on the current thread.
///
/// See [module level][mod] documentation for more details.
///
/// [mod]: crate
/// See [crate root][crate] documentation for more details.
#[derive(Debug)]
pub struct Runtime {
local: LocalSet,
rt: runtime::Runtime,
rt: tokio::runtime::Runtime,
}
impl Runtime {
#[allow(clippy::new_ret_no_self)]
/// Returns a new runtime initialized with default configuration values.
#[allow(clippy::new_ret_no_self)]
pub fn new() -> io::Result<Runtime> {
let rt = runtime::Builder::new_current_thread()
let rt = tokio::runtime::Builder::new_current_thread()
.enable_io()
.enable_time()
.build()?;
@ -29,62 +26,53 @@ impl Runtime {
})
}
pub(super) fn local(&self) -> &LocalSet {
/// Reference to local task set.
pub(crate) fn local(&self) -> &LocalSet {
&self.local
}
/// Spawn a future onto the single-threaded runtime.
/// Offload a future onto the single-threaded runtime.
///
/// See [module level][mod] documentation for more details.
/// The returned join handle can be used to await the future's result.
///
/// [mod]: crate
/// See [crate root][crate] documentation for more details.
///
/// # Examples
///
/// ```ignore
/// # use futures::{future, Future, Stream};
/// use actix_rt::Runtime;
///
/// # fn dox() {
/// // Create the runtime
/// let rt = Runtime::new().unwrap();
/// ```
/// let rt = actix_rt::Runtime::new().unwrap();
///
/// // Spawn a future onto the runtime
/// rt.spawn(future::lazy(|_| {
/// let handle = rt.spawn(async {
/// println!("running on the runtime");
/// }));
/// # }
/// # pub fn main() {}
/// 42
/// });
///
/// assert_eq!(rt.block_on(handle).unwrap(), 42);
/// ```
///
/// # Panics
///
/// This function panics if the spawn fails. Failure occurs if the executor
/// is currently at capacity and is unable to spawn a new future.
pub fn spawn<F>(&self, future: F) -> &Self
/// This function panics if the spawn fails. Failure occurs if the executor is currently at
/// capacity and is unable to spawn a new future.
pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
where
F: Future<Output = ()> + 'static,
F: Future + 'static,
{
self.local.spawn_local(future);
self
self.local.spawn_local(future)
}
/// Runs the provided future, blocking the current thread until the future
/// completes.
/// Runs the provided future, blocking the current thread until the future completes.
///
/// This function can be used to synchronously block the current thread
/// until the provided `future` has resolved either successfully or with an
/// error. The result of the future is then returned from this function
/// call.
/// This function can be used to synchronously block the current thread until the provided
/// `future` has resolved either successfully or with an error. The result of the future is
/// then returned from this function call.
///
/// Note that this function will **also** execute any spawned futures on the
/// current thread, but will **not** block until these other spawned futures
/// have completed. Once the function returns, any uncompleted futures
/// remain pending in the `Runtime` instance. These futures will not run
/// Note that this function will also execute any spawned futures on the current thread, but
/// will not block until these other spawned futures have completed. Once the function returns,
/// any uncompleted futures remain pending in the `Runtime` instance. These futures will not run
/// until `block_on` or `run` is called again.
///
/// The caller is responsible for ensuring that other spawned futures
/// complete execution by calling `block_on` or `run`.
/// The caller is responsible for ensuring that other spawned futures complete execution by
/// calling `block_on` or `run`.
pub fn block_on<F>(&self, f: F) -> F::Output
where
F: Future,

View File

@ -1,13 +1,16 @@
use std::cell::RefCell;
use std::future::Future;
use std::io;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::{
cell::RefCell,
future::Future,
io,
sync::atomic::{AtomicUsize, Ordering},
};
use tokio::sync::mpsc::UnboundedSender;
use tokio::task::LocalSet;
use tokio::{sync::mpsc::UnboundedSender, task::LocalSet};
use crate::arbiter::{Arbiter, SystemCommand};
use crate::builder::{Builder, SystemRunner};
use crate::{
arbiter::{Arbiter, SystemCommand},
builder::{Builder, SystemRunner},
};
static SYSTEM_COUNT: AtomicUsize = AtomicUsize::new(0);
@ -43,16 +46,15 @@ impl System {
/// Build a new system with a customized tokio runtime.
///
/// This allows to customize the runtime. See struct level docs on
/// `Builder` for more information.
/// This allows to customize the runtime. See [`Builder`] for more information.
pub fn builder() -> Builder {
Builder::new()
}
#[allow(clippy::new_ret_no_self)]
/// Create new system.
///
/// This method panics if it can not create tokio runtime
#[allow(clippy::new_ret_no_self)]
pub fn new<T: Into<String>>(name: T) -> SystemRunner {
Self::builder().name(name).build()
}
@ -64,13 +66,10 @@ impl System {
/// Note: This method uses provided `LocalSet` to create a `System` future only.
/// All the [`Arbiter`]s will be started in separate threads using their own tokio `Runtime`s.
/// It means that using this method currently it is impossible to make `actix-rt` work in the
/// alternative `tokio` `Runtime`s (e.g. provided by [`tokio_compat`]).
///
/// [`tokio_compat`]: https://crates.io/crates/tokio-compat
/// alternative Tokio runtimes such as those provided by `tokio_compat`.
///
/// # Examples
///
/// ```ignore
/// ```
/// use tokio::{runtime::Runtime, task::LocalSet};
/// use actix_rt::System;
/// use futures_util::future::try_join_all;
@ -93,14 +92,12 @@ impl System {
/// .expect("Some of the futures finished unexpectedly");
/// }
///
///
/// let runtime = tokio::runtime::Builder::new_multi_thread()
/// .worker_threads(2)
/// .enable_all()
/// .build()
/// .unwrap();
///
///
/// let actix_system_task = LocalSet::new();
/// let sys = System::run_in_tokio("actix-main-system", &actix_system_task);
/// actix_system_task.spawn_local(sys);
@ -112,34 +109,28 @@ impl System {
name: T,
local: &LocalSet,
) -> impl Future<Output = io::Result<()>> {
Self::builder()
.name(name)
.build_async(local)
.run_nonblocking()
Self::builder().name(name).build_async(local).run()
}
/// Consume the provided tokio Runtime and start the `System` in it.
/// Consume the provided Tokio Runtime and start the `System` in it.
/// This method will create a `LocalSet` object and occupy the current thread
/// for the created `System` exclusively. All the other asynchronous tasks that
/// should be executed as well must be aggregated into one future, provided as the last
/// argument to this method.
///
/// Note: This method uses provided `Runtime` to create a `System` future only.
/// All the [`Arbiter`]s will be started in separate threads using their own tokio `Runtime`s.
/// All the [`Arbiter`]s will be started in separate threads using their own Tokio `Runtime`s.
/// It means that using this method currently it is impossible to make `actix-rt` work in the
/// alternative `tokio` `Runtime`s (e.g. provided by `tokio_compat`).
///
/// [`tokio_compat`]: https://crates.io/crates/tokio-compat
/// alternative Tokio runtimes such as those provided by `tokio_compat`.
///
/// # Arguments
///
/// - `name`: Name of the System
/// - `runtime`: A tokio Runtime to run the system in.
/// - `runtime`: A Tokio Runtime to run the system in.
/// - `rest_operations`: A future to be executed in the runtime along with the System.
///
/// # Examples
///
/// ```ignore
/// ```
/// use tokio::runtime::Runtime;
/// use actix_rt::System;
/// use futures_util::future::try_join_all;
@ -172,14 +163,11 @@ impl System {
/// let rest_operations = run_application();
/// System::attach_to_tokio("actix-main-system", runtime, rest_operations);
/// ```
pub fn attach_to_tokio<Fut, R>(
pub fn attach_to_tokio<Fut: Future>(
name: impl Into<String>,
runtime: tokio::runtime::Runtime,
rest_operations: Fut,
) -> R
where
Fut: std::future::Future<Output = R>,
{
) -> Fut::Output {
let actix_system_task = LocalSet::new();
let sys = System::run_in_tokio(name.into(), &actix_system_task);
actix_system_task.spawn_local(sys);
@ -195,7 +183,7 @@ impl System {
})
}
/// Check if current system is set, i.e., as already been started.
/// Check if current system has started.
pub fn is_set() -> bool {
CURRENT.with(|cell| cell.borrow().is_some())
}
@ -219,12 +207,12 @@ impl System {
})
}
/// System id
/// Numeric system ID.
pub fn id(&self) -> usize {
self.id
}
/// Stop the system
/// Stop the system (with code 0).
pub fn stop(&self) {
self.stop_with_code(0)
}
@ -240,18 +228,17 @@ impl System {
/// Return status of 'stop_on_panic' option which controls whether the System is stopped when an
/// uncaught panic is thrown from a worker thread.
pub fn stop_on_panic(&self) -> bool {
pub(crate) fn stop_on_panic(&self) -> bool {
self.stop_on_panic
}
/// System arbiter
/// Get shared reference to system arbiter.
pub fn arbiter(&self) -> &Arbiter {
&self.arbiter
}
/// This function will start tokio runtime and will finish once the
/// `System::stop()` message get called.
/// Function `f` get called within tokio runtime context.
/// This function will start tokio runtime and will finish once the `System::stop()` message
/// is called. Function `f` is called within tokio runtime context.
pub fn run<F>(f: F) -> io::Result<()>
where
F: FnOnce(),

View File

@ -1,8 +1,10 @@
use std::time::{Duration, Instant};
use futures_util::future::try_join_all;
#[test]
fn await_for_timer() {
let time = Duration::from_secs(2);
let time = Duration::from_secs(1);
let instant = Instant::now();
actix_rt::System::new("test_wait_timer").block_on(async move {
tokio::time::sleep(time).await;
@ -15,7 +17,7 @@ fn await_for_timer() {
#[test]
fn join_another_arbiter() {
let time = Duration::from_secs(2);
let time = Duration::from_secs(1);
let instant = Instant::now();
actix_rt::System::new("test_join_another_arbiter").block_on(async move {
let mut arbiter = actix_rt::Arbiter::new();
@ -87,3 +89,100 @@ fn non_static_block_on() {
})
.unwrap();
}
#[test]
fn wait_for_spawns() {
let rt = actix_rt::Runtime::new().unwrap();
let handle = rt.spawn(async {
println!("running on the runtime");
// assertion panic is caught at task boundary
assert_eq!(1, 2);
});
assert!(rt.block_on(handle).is_err());
}
#[test]
fn run_in_existing_tokio() {
use actix_rt::System;
use futures_util::future::try_join_all;
use tokio::task::LocalSet;
async fn run_application() {
let first_task = tokio::spawn(async {
println!("One task");
Ok::<(), ()>(())
});
let second_task = tokio::spawn(async {
println!("Another task");
Ok::<(), ()>(())
});
try_join_all(vec![first_task, second_task])
.await
.expect("Some of the futures finished unexpectedly");
}
let runtime = tokio::runtime::Builder::new_multi_thread()
.worker_threads(2)
.enable_all()
.build()
.unwrap();
let actix_local_set = LocalSet::new();
let sys = System::run_in_tokio("actix-main-system", &actix_local_set);
actix_local_set.spawn_local(sys);
let rest_operations = run_application();
runtime.block_on(actix_local_set.run_until(rest_operations));
}
async fn run_application() -> usize {
let first_task = tokio::spawn(async {
println!("One task");
Ok::<(), ()>(())
});
let second_task = tokio::spawn(async {
println!("Another task");
Ok::<(), ()>(())
});
let tasks = try_join_all(vec![first_task, second_task])
.await
.expect("Some of the futures finished unexpectedly");
tasks.len()
}
#[test]
fn attack_to_tokio() {
use actix_rt::System;
let runtime = tokio::runtime::Builder::new_multi_thread()
.worker_threads(2)
.enable_all()
.build()
.unwrap();
let rest_operations = run_application();
let res = System::attach_to_tokio("actix-main-system", runtime, rest_operations);
assert_eq!(res, 2);
}
#[tokio::test]
async fn attack_to_tokio_macro() {
use actix_rt::System;
let rest_operations = run_application();
let res = System::attach_to_tokio(
"actix-main-system",
tokio::runtime::Runtime::handle(&self),
rest_operations,
);
assert_eq!(res, 2);
}