use std::future::Future; use std::pin::Pin; use std::rc::Rc; use std::sync::Arc; use std::task::{Context, Poll}; use crate::transform_err::TransformMapInitErr; use crate::{IntoServiceFactory, Service, ServiceFactory}; /// Apply transform to a service. Function returns /// services factory that in initialization creates /// service and applies transform to this service. pub fn apply(t: T, service: U) -> ApplyTransform where S: ServiceFactory, T: Transform, U: IntoServiceFactory, { ApplyTransform::new(t, service.into_factory()) } /// The `Transform` trait defines the interface of a Service factory. `Transform` /// is often implemented for middleware, defining how to construct a /// middleware Service. A Service that is constructed by the factory takes /// the Service that follows it during execution as a parameter, assuming /// ownership of the next Service. pub trait Transform { /// Requests handled by the service. type Request; /// Responses given by the service. type Response; /// Errors produced by the service. type Error; /// The `TransformService` value created by this factory type Transform: Service< Request = Self::Request, Response = Self::Response, Error = Self::Error, >; /// Errors produced while building a service. type InitError; /// The future response value. type Future: Future>; /// Creates and returns a new Service component, asynchronously fn new_transform(&self, service: S) -> Self::Future; /// Map this transforms's factory error to a different error, /// returning a new transform service factory. fn map_init_err(self, f: F) -> TransformMapInitErr where Self: Sized, F: Fn(Self::InitError) -> E + Clone, { TransformMapInitErr::new(self, f) } } impl Transform for Rc where T: Transform, { type Request = T::Request; type Response = T::Response; type Error = T::Error; type InitError = T::InitError; type Transform = T::Transform; type Future = T::Future; fn new_transform(&self, service: S) -> T::Future { self.as_ref().new_transform(service) } } impl Transform for Arc where T: Transform, { type Request = T::Request; type Response = T::Response; type Error = T::Error; type InitError = T::InitError; type Transform = T::Transform; type Future = T::Future; fn new_transform(&self, service: S) -> T::Future { self.as_ref().new_transform(service) } } /// `Apply` transform to new service pub struct ApplyTransform(Rc<(T, S)>); impl ApplyTransform where S: ServiceFactory, T: Transform, { /// Create new `ApplyTransform` new service instance fn new(t: T, service: S) -> Self { Self(Rc::new((t, service))) } } impl Clone for ApplyTransform { fn clone(&self) -> Self { ApplyTransform(self.0.clone()) } } impl ServiceFactory for ApplyTransform where S: ServiceFactory, T: Transform, { type Request = T::Request; type Response = T::Response; type Error = T::Error; type Config = S::Config; type Service = T::Transform; type InitError = T::InitError; type Future = ApplyTransformFuture; fn new_service(&self, cfg: S::Config) -> Self::Future { ApplyTransformFuture { store: self.0.clone(), state: ApplyTransformFutureState::A(self.0.as_ref().1.new_service(cfg)), } } } #[pin_project::pin_project] pub struct ApplyTransformFuture where S: ServiceFactory, T: Transform, { store: Rc<(T, S)>, #[pin] state: ApplyTransformFutureState, } #[pin_project::pin_project] pub enum ApplyTransformFutureState where S: ServiceFactory, T: Transform, { A(#[pin] S::Future), B(#[pin] T::Future), } impl Future for ApplyTransformFuture where S: ServiceFactory, T: Transform, { type Output = Result; #[pin_project::project] fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { let mut this = self.as_mut().project(); #[project] match this.state.as_mut().project() { ApplyTransformFutureState::A(fut) => match fut.poll(cx)? { Poll::Ready(srv) => { let fut = this.store.0.new_transform(srv); this.state.set(ApplyTransformFutureState::B(fut)); self.poll(cx) } Poll::Pending => Poll::Pending, }, ApplyTransformFutureState::B(fut) => fut.poll(cx), } } }