actix_rt/runtime.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
use std::{future::Future, io};
use tokio::task::{JoinHandle, LocalSet};
/// A Tokio-based runtime proxy.
///
/// All spawned futures will be executed on the current thread. Therefore, there is no `Send` bound
/// on submitted futures.
#[derive(Debug)]
pub struct Runtime {
local: LocalSet,
rt: tokio::runtime::Runtime,
}
pub(crate) fn default_tokio_runtime() -> io::Result<tokio::runtime::Runtime> {
tokio::runtime::Builder::new_current_thread()
.enable_io()
.enable_time()
.build()
}
impl Runtime {
/// Returns a new runtime initialized with default configuration values.
#[allow(clippy::new_ret_no_self)]
pub fn new() -> io::Result<Self> {
let rt = default_tokio_runtime()?;
Ok(Runtime {
rt,
local: LocalSet::new(),
})
}
/// Offload a future onto the single-threaded runtime.
///
/// The returned join handle can be used to await the future's result.
///
/// See [crate root][crate] documentation for more details.
///
/// # Examples
/// ```
/// let rt = actix_rt::Runtime::new().unwrap();
///
/// // Spawn a future onto the runtime
/// let handle = rt.spawn(async {
/// println!("running on the runtime");
/// 42
/// });
///
/// assert_eq!(rt.block_on(handle).unwrap(), 42);
/// ```
///
/// # Panics
/// This function panics if the spawn fails. Failure occurs if the executor is currently at
/// capacity and is unable to spawn a new future.
#[track_caller]
pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
where
F: Future + 'static,
{
self.local.spawn_local(future)
}
/// Retrieves a reference to the underlying Tokio runtime associated with this instance.
///
/// The Tokio runtime is responsible for executing asynchronous tasks and managing
/// the event loop for an asynchronous Rust program. This method allows accessing
/// the runtime to interact with its features directly.
///
/// In a typical use case, you might need to share the same runtime between different
/// modules of your project. For example, a module might require a `tokio::runtime::Handle`
/// to spawn tasks on the same runtime, or the runtime itself to configure more complex
/// behaviours.
///
/// # Example
///
/// ```
/// use actix_rt::Runtime;
///
/// mod module_a {
/// pub fn do_something(handle: tokio::runtime::Handle) {
/// handle.spawn(async {
/// // Some asynchronous task here
/// });
/// }
/// }
///
/// mod module_b {
/// pub fn do_something_else(rt: &tokio::runtime::Runtime) {
/// rt.spawn(async {
/// // Another asynchronous task here
/// });
/// }
/// }
///
/// let actix_runtime = actix_rt::Runtime::new().unwrap();
/// let tokio_runtime = actix_runtime.tokio_runtime();
///
/// let handle = tokio_runtime.handle().clone();
///
/// module_a::do_something(handle);
/// module_b::do_something_else(tokio_runtime);
/// ```
///
/// # Returns
///
/// An immutable reference to the `tokio::runtime::Runtime` instance associated with this
/// `Runtime` instance.
///
/// # Note
///
/// While this method provides an immutable reference to the Tokio runtime, which is safe to share across threads,
/// be aware that spawning blocking tasks on the Tokio runtime could potentially impact the execution
/// of the Actix runtime. This is because Tokio is responsible for driving the Actix system,
/// and blocking tasks could delay or deadlock other tasks in run loop.
pub fn tokio_runtime(&self) -> &tokio::runtime::Runtime {
&self.rt
}
/// Runs the provided future, blocking the current thread until the future completes.
///
/// This function can be used to synchronously block the current thread until the provided
/// `future` has resolved either successfully or with an error. The result of the future is
/// then returned from this function call.
///
/// Note that this function will also execute any spawned futures on the current thread, but
/// will not block until these other spawned futures have completed. Once the function returns,
/// any uncompleted futures remain pending in the `Runtime` instance. These futures will not run
/// until `block_on` or `run` is called again.
///
/// The caller is responsible for ensuring that other spawned futures complete execution by
/// calling `block_on` or `run`.
#[track_caller]
pub fn block_on<F>(&self, f: F) -> F::Output
where
F: Future,
{
self.local.block_on(&self.rt, f)
}
}
impl From<tokio::runtime::Runtime> for Runtime {
fn from(rt: tokio::runtime::Runtime) -> Self {
Self {
local: LocalSet::new(),
rt,
}
}
}