actix_service/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
//! See [`Service`] docs for information on this crate's foundational trait.
#![no_std]
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible, missing_docs)]
#![allow(clippy::type_complexity)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
extern crate alloc;
use alloc::{boxed::Box, rc::Rc, sync::Arc};
use core::{
cell::RefCell,
future::Future,
task::{self, Context, Poll},
};
mod and_then;
mod apply;
mod apply_cfg;
pub mod boxed;
mod ext;
mod fn_service;
mod macros;
mod map;
mod map_config;
mod map_err;
mod map_init_err;
mod pipeline;
mod ready;
mod then;
mod transform;
mod transform_err;
#[allow(unused_imports)]
use self::ready::{err, ok, ready, Ready};
pub use self::{
apply::{apply_fn, apply_fn_factory},
apply_cfg::{apply_cfg, apply_cfg_factory},
ext::{ServiceExt, ServiceFactoryExt, TransformExt},
fn_service::{fn_factory, fn_factory_with_config, fn_service},
map_config::{map_config, unit_config},
transform::{apply, ApplyTransform, Transform},
};
/// An asynchronous operation from `Request` to a `Response`.
///
/// The `Service` trait models a request/response interaction, receiving requests and returning
/// replies. You can think about a service as a function with one argument that returns some result
/// asynchronously. Conceptually, the operation looks like this:
///
/// ```ignore
/// async fn(Request) -> Result<Response, Err>
/// ```
///
/// The `Service` trait just generalizes this form. Requests are defined as a generic type parameter
/// and responses and other details are defined as associated types on the trait impl. Notice that
/// this design means that services can receive many request types and converge them to a single
/// response type.
///
/// Services can also have mutable state that influence computation by using a `Cell`, `RefCell`
/// or `Mutex`. Services intentionally do not take `&mut self` to reduce overhead in the
/// common cases.
///
/// `Service` provides a symmetric and uniform API; the same abstractions can be used to represent
/// both clients and servers. Services describe only _transformation_ operations which encourage
/// simple API surfaces. This leads to simpler design of each service, improves test-ability and
/// makes composition easier.
///
/// ```ignore
/// struct MyService;
///
/// impl Service<u8> for MyService {
/// type Response = u64;
/// type Error = MyError;
/// type Future = Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>>>>;
///
/// fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { ... }
///
/// fn call(&self, req: u8) -> Self::Future { ... }
/// }
/// ```
///
/// Sometimes it is not necessary to implement the Service trait. For example, the above service
/// could be rewritten as a simple function and passed to [`fn_service`](fn_service()).
///
/// ```ignore
/// async fn my_service(req: u8) -> Result<u64, MyError>;
///
/// let svc = fn_service(my_service)
/// svc.call(123)
/// ```
pub trait Service<Req> {
/// Responses given by the service.
type Response;
/// Errors produced by the service when polling readiness or executing call.
type Error;
/// The future response value.
type Future: Future<Output = Result<Self::Response, Self::Error>>;
/// Returns `Ready` when the service is able to process requests.
///
/// If the service is at capacity, then `Pending` is returned and the task is notified when the
/// service becomes ready again. This function is expected to be called while on a task.
///
/// This is a best effort implementation. False positives are permitted. It is permitted for
/// the service to return `Ready` from a `poll_ready` call and the next invocation of `call`
/// results in an error.
///
/// # Notes
/// 1. `poll_ready` might be called on a different task to `call`.
/// 1. In cases of chained services, `.poll_ready()` is called for all services at once.
fn poll_ready(&self, ctx: &mut task::Context<'_>) -> Poll<Result<(), Self::Error>>;
/// Process the request and return the response asynchronously.
///
/// This function is expected to be callable off-task. As such, implementations of `call` should
/// take care to not call `poll_ready`. If the service is at capacity and the request is unable
/// to be handled, the returned `Future` should resolve to an error.
///
/// Invoking `call` without first invoking `poll_ready` is permitted. Implementations must be
/// resilient to this fact.
fn call(&self, req: Req) -> Self::Future;
}
/// Factory for creating `Service`s.
///
/// This is useful for cases where new `Service`s must be produced. One case is a TCP
/// server listener: a listener accepts new connections, constructs a new `Service` for each using
/// the `ServiceFactory` trait, and uses the new `Service` to process inbound requests on that new
/// connection.
///
/// `Config` is a service factory configuration type.
///
/// Simple factories may be able to use [`fn_factory`] or [`fn_factory_with_config`] to
/// reduce boilerplate.
pub trait ServiceFactory<Req> {
/// Responses given by the created services.
type Response;
/// Errors produced by the created services.
type Error;
/// Service factory configuration.
type Config;
/// The kind of `Service` created by this factory.
type Service: Service<Req, Response = Self::Response, Error = Self::Error>;
/// Errors potentially raised while building a service.
type InitError;
/// The future of the `Service` instance.g
type Future: Future<Output = Result<Self::Service, Self::InitError>>;
/// Create and return a new service asynchronously.
fn new_service(&self, cfg: Self::Config) -> Self::Future;
}
// TODO: remove implement on mut reference.
impl<'a, S, Req> Service<Req> for &'a mut S
where
S: Service<Req> + 'a,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<'a, S, Req> Service<Req> for &'a S
where
S: Service<Req> + 'a,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<S, Req> Service<Req> for Box<S>
where
S: Service<Req> + ?Sized,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), S::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<S, Req> Service<Req> for Rc<S>
where
S: Service<Req> + ?Sized,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
/// This impl is deprecated since v2 because the `Service` trait now receives shared reference.
impl<S, Req> Service<Req> for RefCell<S>
where
S: Service<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.borrow().poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
self.borrow().call(request)
}
}
impl<S, Req> ServiceFactory<Req> for Rc<S>
where
S: ServiceFactory<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = S::Config;
type Service = S::Service;
type InitError = S::InitError;
type Future = S::Future;
fn new_service(&self, cfg: S::Config) -> S::Future {
self.as_ref().new_service(cfg)
}
}
impl<S, Req> ServiceFactory<Req> for Arc<S>
where
S: ServiceFactory<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = S::Config;
type Service = S::Service;
type InitError = S::InitError;
type Future = S::Future;
fn new_service(&self, cfg: S::Config) -> S::Future {
self.as_ref().new_service(cfg)
}
}
/// Trait for types that can be converted to a `Service`
pub trait IntoService<S, Req>
where
S: Service<Req>,
{
/// Convert to a `Service`
fn into_service(self) -> S;
}
/// Trait for types that can be converted to a `ServiceFactory`
pub trait IntoServiceFactory<SF, Req>
where
SF: ServiceFactory<Req>,
{
/// Convert `Self` to a `ServiceFactory`
fn into_factory(self) -> SF;
}
impl<S, Req> IntoService<S, Req> for S
where
S: Service<Req>,
{
fn into_service(self) -> S {
self
}
}
impl<SF, Req> IntoServiceFactory<SF, Req> for SF
where
SF: ServiceFactory<Req>,
{
fn into_factory(self) -> SF {
self
}
}
/// Convert object of type `U` to a service `S`
pub fn into_service<I, S, Req>(tp: I) -> S
where
I: IntoService<S, Req>,
S: Service<Req>,
{
tp.into_service()
}