actix_service/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! See [`Service`] docs for information on this crate's foundational trait.

#![no_std]
#![deny(rust_2018_idioms, nonstandard_style)]
#![warn(future_incompatible, missing_docs)]
#![allow(clippy::type_complexity)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]

extern crate alloc;

use alloc::{boxed::Box, rc::Rc, sync::Arc};
use core::{
    cell::RefCell,
    future::Future,
    task::{self, Context, Poll},
};

mod and_then;
mod apply;
mod apply_cfg;
pub mod boxed;
mod ext;
mod fn_service;
mod macros;
mod map;
mod map_config;
mod map_err;
mod map_init_err;
mod pipeline;
mod ready;
mod then;
mod transform;
mod transform_err;

#[allow(unused_imports)]
use self::ready::{err, ok, ready, Ready};
pub use self::{
    apply::{apply_fn, apply_fn_factory},
    apply_cfg::{apply_cfg, apply_cfg_factory},
    ext::{ServiceExt, ServiceFactoryExt, TransformExt},
    fn_service::{fn_factory, fn_factory_with_config, fn_service},
    map_config::{map_config, unit_config},
    transform::{apply, ApplyTransform, Transform},
};

/// An asynchronous operation from `Request` to a `Response`.
///
/// The `Service` trait models a request/response interaction, receiving requests and returning
/// replies. You can think about a service as a function with one argument that returns some result
/// asynchronously. Conceptually, the operation looks like this:
///
/// ```ignore
/// async fn(Request) -> Result<Response, Err>
/// ```
///
/// The `Service` trait just generalizes this form. Requests are defined as a generic type parameter
/// and responses and other details are defined as associated types on the trait impl. Notice that
/// this design means that services can receive many request types and converge them to a single
/// response type.
///
/// Services can also have mutable state that influence computation by using a `Cell`, `RefCell`
/// or `Mutex`. Services intentionally do not take `&mut self` to reduce overhead in the
/// common cases.
///
/// `Service` provides a symmetric and uniform API; the same abstractions can be used to represent
/// both clients and servers. Services describe only _transformation_ operations which encourage
/// simple API surfaces. This leads to simpler design of each service, improves test-ability and
/// makes composition easier.
///
/// ```ignore
/// struct MyService;
///
/// impl Service<u8> for MyService {
///      type Response = u64;
///      type Error = MyError;
///      type Future = Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>>>>;
///
///      fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { ... }
///
///      fn call(&self, req: u8) -> Self::Future { ... }
/// }
/// ```
///
/// Sometimes it is not necessary to implement the Service trait. For example, the above service
/// could be rewritten as a simple function and passed to [`fn_service`](fn_service()).
///
/// ```ignore
/// async fn my_service(req: u8) -> Result<u64, MyError>;
///
/// let svc = fn_service(my_service)
/// svc.call(123)
/// ```
pub trait Service<Req> {
    /// Responses given by the service.
    type Response;

    /// Errors produced by the service when polling readiness or executing call.
    type Error;

    /// The future response value.
    type Future: Future<Output = Result<Self::Response, Self::Error>>;

    /// Returns `Ready` when the service is able to process requests.
    ///
    /// If the service is at capacity, then `Pending` is returned and the task is notified when the
    /// service becomes ready again. This function is expected to be called while on a task.
    ///
    /// This is a best effort implementation. False positives are permitted. It is permitted for
    /// the service to return `Ready` from a `poll_ready` call and the next invocation of `call`
    /// results in an error.
    ///
    /// # Notes
    /// 1. `poll_ready` might be called on a different task to `call`.
    /// 1. In cases of chained services, `.poll_ready()` is called for all services at once.
    fn poll_ready(&self, ctx: &mut task::Context<'_>) -> Poll<Result<(), Self::Error>>;

    /// Process the request and return the response asynchronously.
    ///
    /// This function is expected to be callable off-task. As such, implementations of `call` should
    /// take care to not call `poll_ready`. If the service is at capacity and the request is unable
    /// to be handled, the returned `Future` should resolve to an error.
    ///
    /// Invoking `call` without first invoking `poll_ready` is permitted. Implementations must be
    /// resilient to this fact.
    fn call(&self, req: Req) -> Self::Future;
}

/// Factory for creating `Service`s.
///
/// This is useful for cases where new `Service`s must be produced. One case is a TCP
/// server listener: a listener accepts new connections, constructs a new `Service` for each using
/// the `ServiceFactory` trait, and uses the new `Service` to process inbound requests on that new
/// connection.
///
/// `Config` is a service factory configuration type.
///
/// Simple factories may be able to use [`fn_factory`] or [`fn_factory_with_config`] to
/// reduce boilerplate.
pub trait ServiceFactory<Req> {
    /// Responses given by the created services.
    type Response;

    /// Errors produced by the created services.
    type Error;

    /// Service factory configuration.
    type Config;

    /// The kind of `Service` created by this factory.
    type Service: Service<Req, Response = Self::Response, Error = Self::Error>;

    /// Errors potentially raised while building a service.
    type InitError;

    /// The future of the `Service` instance.g
    type Future: Future<Output = Result<Self::Service, Self::InitError>>;

    /// Create and return a new service asynchronously.
    fn new_service(&self, cfg: Self::Config) -> Self::Future;
}

// TODO: remove implement on mut reference.
impl<'a, S, Req> Service<Req> for &'a mut S
where
    S: Service<Req> + 'a,
{
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        (**self).poll_ready(ctx)
    }

    fn call(&self, request: Req) -> S::Future {
        (**self).call(request)
    }
}

impl<'a, S, Req> Service<Req> for &'a S
where
    S: Service<Req> + 'a,
{
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        (**self).poll_ready(ctx)
    }

    fn call(&self, request: Req) -> S::Future {
        (**self).call(request)
    }
}

impl<S, Req> Service<Req> for Box<S>
where
    S: Service<Req> + ?Sized,
{
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), S::Error>> {
        (**self).poll_ready(ctx)
    }

    fn call(&self, request: Req) -> S::Future {
        (**self).call(request)
    }
}

impl<S, Req> Service<Req> for Rc<S>
where
    S: Service<Req> + ?Sized,
{
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        (**self).poll_ready(ctx)
    }

    fn call(&self, request: Req) -> S::Future {
        (**self).call(request)
    }
}

/// This impl is deprecated since v2 because the `Service` trait now receives shared reference.
impl<S, Req> Service<Req> for RefCell<S>
where
    S: Service<Req>,
{
    type Response = S::Response;
    type Error = S::Error;
    type Future = S::Future;

    fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.borrow().poll_ready(ctx)
    }

    fn call(&self, request: Req) -> S::Future {
        self.borrow().call(request)
    }
}

impl<S, Req> ServiceFactory<Req> for Rc<S>
where
    S: ServiceFactory<Req>,
{
    type Response = S::Response;
    type Error = S::Error;
    type Config = S::Config;
    type Service = S::Service;
    type InitError = S::InitError;
    type Future = S::Future;

    fn new_service(&self, cfg: S::Config) -> S::Future {
        self.as_ref().new_service(cfg)
    }
}

impl<S, Req> ServiceFactory<Req> for Arc<S>
where
    S: ServiceFactory<Req>,
{
    type Response = S::Response;
    type Error = S::Error;
    type Config = S::Config;
    type Service = S::Service;
    type InitError = S::InitError;
    type Future = S::Future;

    fn new_service(&self, cfg: S::Config) -> S::Future {
        self.as_ref().new_service(cfg)
    }
}

/// Trait for types that can be converted to a `Service`
pub trait IntoService<S, Req>
where
    S: Service<Req>,
{
    /// Convert to a `Service`
    fn into_service(self) -> S;
}

/// Trait for types that can be converted to a `ServiceFactory`
pub trait IntoServiceFactory<SF, Req>
where
    SF: ServiceFactory<Req>,
{
    /// Convert `Self` to a `ServiceFactory`
    fn into_factory(self) -> SF;
}

impl<S, Req> IntoService<S, Req> for S
where
    S: Service<Req>,
{
    fn into_service(self) -> S {
        self
    }
}

impl<SF, Req> IntoServiceFactory<SF, Req> for SF
where
    SF: ServiceFactory<Req>,
{
    fn into_factory(self) -> SF {
        self
    }
}

/// Convert object of type `U` to a service `S`
pub fn into_service<I, S, Req>(tp: I) -> S
where
    I: IntoService<S, Req>,
    S: Service<Req>,
{
    tp.into_service()
}