use std::future::Future; use std::pin::Pin; use std::rc::Rc; use std::sync::Arc; use std::task::{Context, Poll}; use crate::{IntoServiceFactory, Service, ServiceFactory}; /// The `Transform` trait defines the interface of a Service factory. `Transform` /// is often implemented for middleware, defining how to construct a /// middleware Service. A Service that is constructed by the factory takes /// the Service that follows it during execution as a parameter, assuming /// ownership of the next Service. pub trait Transform { /// Requests handled by the service. type Request; /// Responses given by the service. type Response; /// Errors produced by the service. type Error; /// The `TransformService` value created by this factory type Transform: Service< Request = Self::Request, Response = Self::Response, Error = Self::Error, >; /// Errors produced while building a service. type InitError; /// The future response value. type Future: Future>; /// Creates and returns a new Service component, asynchronously fn new_transform(&self, service: S) -> Self::Future; } impl Transform for Rc where T: Transform, { type Request = T::Request; type Response = T::Response; type Error = T::Error; type InitError = T::InitError; type Transform = T::Transform; type Future = T::Future; fn new_transform(&self, service: S) -> T::Future { self.as_ref().new_transform(service) } } impl Transform for Arc where T: Transform, { type Request = T::Request; type Response = T::Response; type Error = T::Error; type InitError = T::InitError; type Transform = T::Transform; type Future = T::Future; fn new_transform(&self, service: S) -> T::Future { self.as_ref().new_transform(service) } } /// Apply transform to a service. Function returns /// services factory that in initialization creates /// service and applies transform to this service. pub fn apply(t: T, service: U) -> ApplyTransform where S: ServiceFactory, T: Transform, U: IntoServiceFactory, { ApplyTransform::new(t, service.into_factory()) } /// `Apply` transform to new service pub struct ApplyTransform { s: Rc, t: Rc, } impl ApplyTransform where S: ServiceFactory, T: Transform, { /// Create new `ApplyTransform` new service instance fn new(t: T, service: S) -> Self { Self { s: Rc::new(service), t: Rc::new(t), } } } impl Clone for ApplyTransform { fn clone(&self) -> Self { ApplyTransform { s: self.s.clone(), t: self.t.clone(), } } } impl ServiceFactory for ApplyTransform where S: ServiceFactory, T: Transform, { type Request = T::Request; type Response = T::Response; type Error = T::Error; type Config = S::Config; type Service = T::Transform; type InitError = T::InitError; type Future = ApplyTransformFuture; fn new_service(&self, cfg: &S::Config) -> Self::Future { ApplyTransformFuture { t_cell: self.t.clone(), fut_a: self.s.new_service(cfg), fut_t: None, } } } #[pin_project::pin_project] pub struct ApplyTransformFuture where S: ServiceFactory, T: Transform, { #[pin] fut_a: S::Future, #[pin] fut_t: Option, t_cell: Rc, } impl Future for ApplyTransformFuture where S: ServiceFactory, T: Transform, { type Output = Result; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { let mut this = self.as_mut().project(); if let Some(fut) = this.fut_t.as_pin_mut() { return fut.poll(cx); } if let Poll::Ready(service) = this.fut_a.poll(cx)? { let fut = this.t_cell.new_transform(service); this = self.as_mut().project(); this.fut_t.set(Some(fut)); this.fut_t.as_pin_mut().unwrap().poll(cx) } else { return Poll::Pending; } } }