use std::{ sync::{ atomic::{AtomicBool, Ordering}, mpsc::channel, Arc, }, thread, time::{Duration, Instant}, }; use actix_rt::{Arbiter, System}; use tokio::sync::oneshot; #[test] fn await_for_timer() { let time = Duration::from_secs(1); let instant = Instant::now(); System::new().block_on(async move { tokio::time::sleep(time).await; }); assert!( instant.elapsed() >= time, "Block on should poll awaited future to completion" ); } #[test] fn join_another_arbiter() { let time = Duration::from_secs(1); let instant = Instant::now(); System::new().block_on(async move { let arbiter = Arbiter::new(); arbiter.spawn(Box::pin(async move { tokio::time::sleep(time).await; Arbiter::current().stop(); })); arbiter.join().unwrap(); }); assert!( instant.elapsed() >= time, "Join on another arbiter should complete only when it calls stop" ); let instant = Instant::now(); System::new().block_on(async move { let arbiter = Arbiter::new(); arbiter.spawn_fn(move || { actix_rt::spawn(async move { tokio::time::sleep(time).await; Arbiter::current().stop(); }); }); arbiter.join().unwrap(); }); assert!( instant.elapsed() >= time, "Join on an arbiter that has used actix_rt::spawn should wait for said future" ); let instant = Instant::now(); System::new().block_on(async move { let arbiter = Arbiter::new(); arbiter.spawn(Box::pin(async move { tokio::time::sleep(time).await; Arbiter::current().stop(); })); arbiter.stop(); arbiter.join().unwrap(); }); assert!( instant.elapsed() < time, "Premature stop of arbiter should conclude regardless of it's current state" ); } #[test] fn non_static_block_on() { let string = String::from("test_str"); let string = string.as_str(); let sys = System::new(); sys.block_on(async { actix_rt::time::sleep(Duration::from_millis(1)).await; assert_eq!("test_str", string); }); let rt = actix_rt::Runtime::new().unwrap(); rt.block_on(async { actix_rt::time::sleep(Duration::from_millis(1)).await; assert_eq!("test_str", string); }); } #[test] fn wait_for_spawns() { let rt = actix_rt::Runtime::new().unwrap(); let handle = rt.spawn(async { println!("running on the runtime"); // assertion panic is caught at task boundary assert_eq!(1, 2); }); assert!(rt.block_on(handle).is_err()); } #[test] fn arbiter_spawn_fn_runs() { let _ = System::new(); let (tx, rx) = channel::(); let arbiter = Arbiter::new(); arbiter.spawn_fn(move || tx.send(42).unwrap()); let num = rx.recv().unwrap(); assert_eq!(num, 42); arbiter.stop(); arbiter.join().unwrap(); } #[test] fn arbiter_drop_no_panic_fn() { let _ = System::new(); let arbiter = Arbiter::new(); arbiter.spawn_fn(|| panic!("test")); arbiter.stop(); arbiter.join().unwrap(); } #[test] fn arbiter_drop_no_panic_fut() { let _ = System::new(); let arbiter = Arbiter::new(); arbiter.spawn(async { panic!("test") }); arbiter.stop(); arbiter.join().unwrap(); } #[test] #[should_panic] fn no_system_current_panic() { System::current(); } #[test] #[should_panic] fn no_system_arbiter_new_panic() { Arbiter::new(); } #[test] fn system_arbiter_spawn() { let runner = System::new(); let (tx, rx) = oneshot::channel(); let sys = System::current(); thread::spawn(|| { // this thread will have no arbiter in it's thread local so call will panic Arbiter::current(); }) .join() .unwrap_err(); let thread = thread::spawn(|| { // this thread will have no arbiter in it's thread local so use the system handle instead System::set_current(sys); let sys = System::current(); let arb = sys.arbiter(); arb.spawn(async move { tx.send(42u32).unwrap(); System::current().stop(); }); }); assert_eq!(runner.block_on(rx).unwrap(), 42); thread.join().unwrap(); } #[test] fn system_stop_stops_arbiters() { let sys = System::new(); let arb = Arbiter::new(); // arbiter should be alive to receive spawn msg assert!(Arbiter::current().spawn_fn(|| {})); assert!(arb.spawn_fn(|| {})); System::current().stop(); sys.run().unwrap(); // account for slightly slow thread de-spawns (only observed on windows) thread::sleep(Duration::from_millis(100)); // arbiter should be dead and return false assert!(!Arbiter::current().spawn_fn(|| {})); assert!(!arb.spawn_fn(|| {})); arb.join().unwrap(); } #[test] fn new_system_with_tokio() { let (tx, rx) = channel(); let res = System::with_tokio_rt(move || { tokio::runtime::Builder::new_multi_thread() .enable_io() .enable_time() .thread_keep_alive(Duration::from_millis(1000)) .worker_threads(2) .max_blocking_threads(2) .on_thread_start(|| {}) .on_thread_stop(|| {}) .build() .unwrap() }) .block_on(async { actix_rt::time::sleep(Duration::from_millis(1)).await; tokio::task::spawn(async move { tx.send(42).unwrap(); }) .await .unwrap(); 123usize }); assert_eq!(res, 123); assert_eq!(rx.recv().unwrap(), 42); } #[test] fn new_arbiter_with_tokio() { let _ = System::new(); let arb = Arbiter::with_tokio_rt(|| { tokio::runtime::Builder::new_current_thread() .enable_all() .build() .unwrap() }); let counter = Arc::new(AtomicBool::new(true)); let counter1 = counter.clone(); let did_spawn = arb.spawn(async move { actix_rt::time::sleep(Duration::from_millis(1)).await; counter1.store(false, Ordering::SeqCst); Arbiter::current().stop(); }); assert!(did_spawn); arb.join().unwrap(); assert_eq!(false, counter.load(Ordering::SeqCst)); }