1
0
mirror of https://github.com/fafhrd91/actix-net synced 2024-12-19 08:42:39 +01:00
actix-net/actix-service/src/lib.rs

338 lines
9.5 KiB
Rust

//! See [`Service`] docs for information on this crate's foundational trait.
#![no_std]
#![deny(rust_2018_idioms, nonstandard_style)]
#![allow(clippy::type_complexity)]
#![doc(html_logo_url = "https://actix.rs/img/logo.png")]
#![doc(html_favicon_url = "https://actix.rs/favicon.ico")]
extern crate alloc;
use alloc::{boxed::Box, rc::Rc, sync::Arc};
use core::{
cell::RefCell,
future::Future,
task::{self, Context, Poll},
};
mod and_then;
mod apply;
mod apply_cfg;
pub mod boxed;
mod ext;
mod fn_service;
mod map;
mod map_config;
mod map_err;
mod map_init_err;
mod pipeline;
mod ready;
mod then;
mod transform;
mod transform_err;
pub use self::apply::{apply_fn, apply_fn_factory};
pub use self::apply_cfg::{apply_cfg, apply_cfg_factory};
pub use self::ext::{ServiceExt, ServiceFactoryExt};
pub use self::fn_service::{fn_factory, fn_factory_with_config, fn_service};
pub use self::map_config::{map_config, unit_config};
pub use self::pipeline::{pipeline, pipeline_factory, Pipeline, PipelineFactory};
pub use self::transform::{apply, Transform};
#[allow(unused_imports)]
use self::ready::{err, ok, ready, Ready};
/// An asynchronous operation from `Request` to a `Response`.
///
/// The `Service` trait models a request/response interaction, receiving requests and returning
/// replies. You can think about a service as a function with one argument that returns some result
/// asynchronously. Conceptually, the operation looks like this:
///
/// ```ignore
/// async fn(Request) -> Result<Response, Err>
/// ```
///
/// The `Service` trait just generalizes this form where each parameter is described as an
/// associated type on the trait. Services can also have mutable state that influence computation.
///
/// `Service` provides a symmetric and uniform API; the same abstractions can be used to represent
/// both clients and servers. Services describe only _transformation_ operations which encourage
/// simple API surfaces. This leads to simpler design of each service, improves test-ability and
/// makes composition easier.
///
/// ```ignore
/// struct MyService;
///
/// impl Service for MyService {
/// type Request = u8;
/// type Response = u64;
/// type Error = MyError;
/// type Future = Pin<Box<Future<Output=Result<Self::Response, Self::Error>>>>;
///
/// fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { ... }
///
/// fn call(&self, req: Self::Request) -> Self::Future { ... }
/// }
/// ```
///
/// Sometimes it is not necessary to implement the Service trait. For example, the above service
/// could be rewritten as a simple function and passed to [fn_service](fn_service()).
///
/// ```ignore
/// async fn my_service(req: u8) -> Result<u64, MyError>;
/// ```
pub trait Service<Req> {
/// Responses given by the service.
type Response;
/// Errors produced by the service when polling readiness or executing call.
type Error;
/// The future response value.
type Future: Future<Output = Result<Self::Response, Self::Error>>;
/// Returns `Ready` when the service is able to process requests.
///
/// If the service is at capacity, then `Pending` is returned and the task
/// is notified when the service becomes ready again. This function is
/// expected to be called while on a task.
///
/// This is a **best effort** implementation. False positives are permitted.
/// It is permitted for the service to return `Ready` from a `poll_ready`
/// call and the next invocation of `call` results in an error.
///
/// # Notes
/// 1. `.poll_ready()` might be called on different task from actual service call.
/// 1. In case of chained services, `.poll_ready()` get called for all services at once.
fn poll_ready(&self, ctx: &mut task::Context<'_>) -> Poll<Result<(), Self::Error>>;
/// Process the request and return the response asynchronously.
///
/// This function is expected to be callable off task. As such,
/// implementations should take care to not call `poll_ready`. If the
/// service is at capacity and the request is unable to be handled, the
/// returned `Future` should resolve to an error.
///
/// Calling `call` without calling `poll_ready` is permitted. The
/// implementation must be resilient to this fact.
fn call(&self, req: Req) -> Self::Future;
}
/// Factory for creating `Service`s.
///
/// Acts as a service factory. This is useful for cases where new `Service`s
/// must be produced. One case is a TCP server listener. The listener
/// accepts new TCP streams, obtains a new `Service` using the
/// `ServiceFactory` trait, and uses the new `Service` to process inbound
/// requests on that new TCP stream.
///
/// `Config` is a service factory configuration type.
pub trait ServiceFactory<Req> {
/// Responses given by the created services.
type Response;
/// Errors produced by the created services.
type Error;
/// Service factory configuration.
type Config;
/// The kind of `Service` created by this factory.
type Service: Service<Req, Response = Self::Response, Error = Self::Error>;
/// Errors potentially raised while building a service.
type InitError;
/// The future of the `Service` instance.
type Future: Future<Output = Result<Self::Service, Self::InitError>>;
/// Create and return a new service asynchronously.
fn new_service(&self, cfg: Self::Config) -> Self::Future;
}
impl<'a, S, Req> Service<Req> for &'a mut S
where
S: Service<Req> + 'a,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<S, Req> Service<Req> for Box<S>
where
S: Service<Req> + ?Sized,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), S::Error>> {
(**self).poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
(**self).call(request)
}
}
impl<S, Req> Service<Req> for RefCell<S>
where
S: Service<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.borrow().poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
self.borrow().call(request)
}
}
impl<S, Req> Service<Req> for Rc<RefCell<S>>
where
S: Service<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn poll_ready(&self, ctx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.borrow().poll_ready(ctx)
}
fn call(&self, request: Req) -> S::Future {
self.borrow().call(request)
}
}
impl<S, Req> ServiceFactory<Req> for Rc<S>
where
S: ServiceFactory<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = S::Config;
type Service = S::Service;
type InitError = S::InitError;
type Future = S::Future;
fn new_service(&self, cfg: S::Config) -> S::Future {
self.as_ref().new_service(cfg)
}
}
impl<S, Req> ServiceFactory<Req> for Arc<S>
where
S: ServiceFactory<Req>,
{
type Response = S::Response;
type Error = S::Error;
type Config = S::Config;
type Service = S::Service;
type InitError = S::InitError;
type Future = S::Future;
fn new_service(&self, cfg: S::Config) -> S::Future {
self.as_ref().new_service(cfg)
}
}
/// Trait for types that can be converted to a `Service`
pub trait IntoService<S, Req>
where
S: Service<Req>,
{
/// Convert to a `Service`
fn into_service(self) -> S;
}
/// Trait for types that can be converted to a `ServiceFactory`
pub trait IntoServiceFactory<SF, Req>
where
SF: ServiceFactory<Req>,
{
/// Convert `Self` to a `ServiceFactory`
fn into_factory(self) -> SF;
}
impl<S, Req> IntoService<S, Req> for S
where
S: Service<Req>,
{
fn into_service(self) -> S {
self
}
}
impl<SF, Req> IntoServiceFactory<SF, Req> for SF
where
SF: ServiceFactory<Req>,
{
fn into_factory(self) -> SF {
self
}
}
/// Convert object of type `U` to a service `S`
pub fn into_service<I, S, Req>(tp: I) -> S
where
I: IntoService<S, Req>,
S: Service<Req>,
{
tp.into_service()
}
pub mod dev {
pub use crate::apply::{Apply, ApplyFactory};
pub use crate::fn_service::{
FnService, FnServiceConfig, FnServiceFactory, FnServiceNoConfig,
};
pub use crate::map::{Map, MapServiceFactory};
pub use crate::map_config::{MapConfig, UnitConfig};
pub use crate::map_err::{MapErr, MapErrServiceFactory};
pub use crate::map_init_err::MapInitErr;
pub use crate::transform::ApplyTransform;
pub use crate::transform_err::TransformMapInitErr;
}
#[macro_export]
macro_rules! always_ready {
() => {
#[inline]
fn poll_ready(
&self,
_: &mut ::core::task::Context<'_>,
) -> ::core::task::Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
};
}
#[macro_export]
macro_rules! forward_ready {
($field:ident) => {
#[inline]
fn poll_ready(
&self,
cx: &mut ::core::task::Context<'_>,
) -> ::core::task::Poll<Result<(), Self::Error>> {
self.$field
.poll_ready(cx)
.map_err(::core::convert::Into::into)
}
};
}