1
0
mirror of https://github.com/fafhrd91/actix-net synced 2024-12-18 20:13:10 +01:00
actix-net/src/codec/framed.rs
2018-11-13 21:33:51 -08:00

323 lines
10 KiB
Rust

#![allow(deprecated)]
use std::fmt;
use std::io::{self, Read, Write};
use bytes::BytesMut;
use futures::{Poll, Sink, StartSend, Stream};
use tokio_codec::{Decoder, Encoder};
use tokio_io::{AsyncRead, AsyncWrite};
use super::framed_read::{framed_read2, framed_read2_with_buffer, FramedRead2};
use super::framed_write::{framed_write2, framed_write2_with_buffer, FramedWrite2};
const LW: usize = 1024;
const HW: usize = 8 * 1024;
/// A unified `Stream` and `Sink` interface to an underlying I/O object, using
/// the `Encoder` and `Decoder` traits to encode and decode frames.
///
/// You can create a `Framed` instance by using the `AsyncRead::framed` adapter.
pub struct Framed<T, U> {
inner: FramedRead2<FramedWrite2<Fuse<T, U>>>,
}
pub struct Fuse<T, U>(pub T, pub U);
impl<T, U> Framed<T, U>
where
T: AsyncRead + AsyncWrite,
U: Decoder + Encoder,
{
/// Provides a `Stream` and `Sink` interface for reading and writing to this
/// `Io` object, using `Decode` and `Encode` to read and write the raw data.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the `Codec`
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both `Stream` and
/// `Sink`; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// If you want to work more directly with the streams and sink, consider
/// calling `split` on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
pub fn new(inner: T, codec: U) -> Framed<T, U> {
Framed {
inner: framed_read2(framed_write2(Fuse(inner, codec), LW, HW)),
}
}
/// Same as `Framed::new()` with ability to specify write buffer low/high capacity watermarks.
pub fn new_with_caps(inner: T, codec: U, lw: usize, hw: usize) -> Framed<T, U> {
Framed {
inner: framed_read2(framed_write2(Fuse(inner, codec), lw, hw)),
}
}
}
impl<T, U> Framed<T, U> {
/// Provides a `Stream` and `Sink` interface for reading and writing to this
/// `Io` object, using `Decode` and `Encode` to read and write the raw data.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the `Codec`
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both `Stream` and
/// `Sink`; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// This objects takes a stream and a readbuffer and a writebuffer. These
/// field can be obtained from an existing `Framed` with the
/// `into_parts` method.
///
/// If you want to work more directly with the streams and sink, consider
/// calling `split` on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
pub fn from_parts(parts: FramedParts<T, U>) -> Framed<T, U> {
Framed {
inner: framed_read2_with_buffer(
framed_write2_with_buffer(
Fuse(parts.io, parts.codec),
parts.write_buf,
parts.write_buf_lw,
parts.write_buf_hw,
),
parts.read_buf,
),
}
}
/// Returns a reference to the underlying codec.
pub fn get_codec(&self) -> &U {
&self.inner.get_ref().get_ref().1
}
/// Returns a mutable reference to the underlying codec.
pub fn get_codec_mut(&mut self) -> &mut U {
&mut self.inner.get_mut().get_mut().1
}
/// Returns a reference to the underlying I/O stream wrapped by
/// `Frame`.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn get_ref(&self) -> &T {
&self.inner.get_ref().get_ref().0
}
/// Returns a mutable reference to the underlying I/O stream wrapped by
/// `Frame`.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner.get_mut().get_mut().0
}
/// Check if write buffer is full.
pub fn is_full(&self) -> bool {
self.inner.get_ref().is_full()
}
/// Consumes the `Frame`, returning its underlying I/O stream.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn into_inner(self) -> T {
self.inner.into_inner().into_inner().0
}
/// Consume the `Frame`, returning `Frame` with different codec.
pub fn into_framed<U2>(self, codec: U2) -> Framed<T, U2> {
let (inner, read_buf) = self.inner.into_parts();
let (inner, write_buf, lw, hw) = inner.into_parts();
Framed {
inner: framed_read2_with_buffer(
framed_write2_with_buffer(Fuse(inner.0, codec), write_buf, lw, hw),
read_buf,
),
}
}
/// Consumes the `Frame`, returning its underlying I/O stream, the buffer
/// with unprocessed data, and the codec.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn into_parts(self) -> FramedParts<T, U> {
let (inner, read_buf) = self.inner.into_parts();
let (inner, write_buf, write_buf_lw, write_buf_hw) = inner.into_parts();
FramedParts {
io: inner.0,
codec: inner.1,
read_buf,
write_buf,
write_buf_lw,
write_buf_hw,
_priv: (),
}
}
}
impl<T, U> Stream for Framed<T, U>
where
T: AsyncRead,
U: Decoder,
{
type Item = U::Item;
type Error = U::Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.inner.poll()
}
}
impl<T, U> Sink for Framed<T, U>
where
T: AsyncWrite,
U: Encoder,
U::Error: From<io::Error>,
{
type SinkItem = U::Item;
type SinkError = U::Error;
fn start_send(
&mut self,
item: Self::SinkItem,
) -> StartSend<Self::SinkItem, Self::SinkError> {
self.inner.get_mut().start_send(item)
}
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.inner.get_mut().poll_complete()
}
fn close(&mut self) -> Poll<(), Self::SinkError> {
self.inner.get_mut().close()
}
}
impl<T, U> fmt::Debug for Framed<T, U>
where
T: fmt::Debug,
U: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Framed")
.field("io", &self.inner.get_ref().get_ref().0)
.field("codec", &self.inner.get_ref().get_ref().1)
.finish()
}
}
// ===== impl Fuse =====
impl<T: Read, U> Read for Fuse<T, U> {
fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
self.0.read(dst)
}
}
impl<T: AsyncRead, U> AsyncRead for Fuse<T, U> {
unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [u8]) -> bool {
self.0.prepare_uninitialized_buffer(buf)
}
}
impl<T: Write, U> Write for Fuse<T, U> {
fn write(&mut self, src: &[u8]) -> io::Result<usize> {
self.0.write(src)
}
fn flush(&mut self) -> io::Result<()> {
self.0.flush()
}
}
impl<T: AsyncWrite, U> AsyncWrite for Fuse<T, U> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.0.shutdown()
}
}
impl<T, U: Decoder> Decoder for Fuse<T, U> {
type Item = U::Item;
type Error = U::Error;
fn decode(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.1.decode(buffer)
}
fn decode_eof(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.1.decode_eof(buffer)
}
}
impl<T, U: Encoder> Encoder for Fuse<T, U> {
type Item = U::Item;
type Error = U::Error;
fn encode(&mut self, item: Self::Item, dst: &mut BytesMut) -> Result<(), Self::Error> {
self.1.encode(item, dst)
}
}
/// `FramedParts` contains an export of the data of a Framed transport.
/// It can be used to construct a new `Framed` with a different codec.
/// It contains all current buffers and the inner transport.
#[derive(Debug)]
pub struct FramedParts<T, U> {
/// The inner transport used to read bytes to and write bytes to
pub io: T,
/// The codec
pub codec: U,
/// The buffer with read but unprocessed data.
pub read_buf: BytesMut,
/// A buffer with unprocessed data which are not written yet.
pub write_buf: BytesMut,
/// A buffer low watermark capacity
pub write_buf_lw: usize,
/// A buffer high watermark capacity
pub write_buf_hw: usize,
/// This private field allows us to add additional fields in the future in a
/// backwards compatible way.
_priv: (),
}
impl<T, U> FramedParts<T, U> {
/// Create a new, default, `FramedParts`
pub fn new(io: T, codec: U) -> FramedParts<T, U> {
FramedParts {
io,
codec,
read_buf: BytesMut::new(),
write_buf: BytesMut::new(),
write_buf_lw: LW,
write_buf_hw: HW,
_priv: (),
}
}
}