1
0
mirror of https://github.com/fafhrd91/actix-net synced 2024-11-24 22:02:59 +01:00
actix-net/actix-service/src/pipeline.rs
2019-12-05 12:37:26 +06:00

292 lines
8.6 KiB
Rust

use std::future::Future;
use std::task::{Context, Poll};
use crate::and_then::{AndThenService, AndThenServiceFactory};
use crate::and_then_apply_fn::{AndThenApplyFn, AndThenApplyFnFactory};
use crate::map::{Map, MapServiceFactory};
use crate::map_err::{MapErr, MapErrServiceFactory};
use crate::map_init_err::MapInitErr;
use crate::then::{ThenService, ThenServiceFactory};
use crate::{IntoService, IntoServiceFactory, Service, ServiceFactory};
pub fn pipeline<F, T>(service: F) -> Pipeline<T>
where
F: IntoService<T>,
T: Service,
{
Pipeline {
service: service.into_service(),
}
}
pub fn pipeline_factory<T, F>(factory: F) -> PipelineFactory<T>
where
T: ServiceFactory,
F: IntoServiceFactory<T>,
{
PipelineFactory {
factory: factory.into_factory(),
}
}
/// Pipeline service
pub struct Pipeline<T> {
service: T,
}
impl<T: Service> Pipeline<T> {
/// Call another service after call to this one has resolved successfully.
///
/// This function can be used to chain two services together and ensure that
/// the second service isn't called until call to the fist service have
/// finished. Result of the call to the first service is used as an
/// input parameter for the second service's call.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it.
pub fn and_then<F, U>(self, service: F) -> Pipeline<AndThenService<T, U>>
where
Self: Sized,
F: IntoService<U>,
U: Service<Request = T::Response, Error = T::Error>,
{
Pipeline {
service: AndThenService::new(self.service, service.into_service()),
}
}
/// Apply function to specified service and use it as a next service in
/// chain.
///
/// Short version of `pipeline_factory(...).and_then(apply_fn_factory(...))`
pub fn and_then_apply_fn<U, I, F, Fut, Res, Err>(
self,
service: I,
f: F,
) -> Pipeline<AndThenApplyFn<T, U, F, Fut, Res, Err>>
where
Self: Sized,
I: IntoService<U>,
U: Service,
F: FnMut(T::Response, &mut U) -> Fut,
Fut: Future<Output = Result<Res, Err>>,
Err: From<T::Error> + From<U::Error>,
{
Pipeline {
service: AndThenApplyFn::new(self.service, service.into_service(), f),
}
}
/// Chain on a computation for when a call to the service finished,
/// passing the result of the call to the next service `U`.
///
/// Note that this function consumes the receiving pipeline and returns a
/// wrapped version of it.
pub fn then<F, U>(self, service: F) -> Pipeline<ThenService<T, U>>
where
Self: Sized,
F: IntoService<U>,
U: Service<Request = Result<T::Response, T::Error>, Error = T::Error>,
{
Pipeline {
service: ThenService::new(self.service, service.into_service()),
}
}
/// Map this service's output to a different type, returning a new service
/// of the resulting type.
///
/// This function is similar to the `Option::map` or `Iterator::map` where
/// it will change the type of the underlying service.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it, similar to the existing `map` methods in the
/// standard library.
pub fn map<F, R>(self, f: F) -> Pipeline<Map<T, F, R>>
where
Self: Sized,
F: FnMut(T::Response) -> R,
{
Pipeline {
service: Map::new(self.service, f),
}
}
/// Map this service's error to a different error, returning a new service.
///
/// This function is similar to the `Result::map_err` where it will change
/// the error type of the underlying service. This is useful for example to
/// ensure that services have the same error type.
///
/// Note that this function consumes the receiving service and returns a
/// wrapped version of it.
pub fn map_err<F, E>(self, f: F) -> Pipeline<MapErr<T, F, E>>
where
Self: Sized,
F: Fn(T::Error) -> E,
{
Pipeline {
service: MapErr::new(self.service, f),
}
}
}
impl<T> Clone for Pipeline<T>
where
T: Clone,
{
fn clone(&self) -> Self {
Pipeline {
service: self.service.clone(),
}
}
}
impl<T: Service> Service for Pipeline<T> {
type Request = T::Request;
type Response = T::Response;
type Error = T::Error;
type Future = T::Future;
#[inline]
fn poll_ready(&mut self, ctx: &mut Context<'_>) -> Poll<Result<(), T::Error>> {
self.service.poll_ready(ctx)
}
#[inline]
fn call(&mut self, req: T::Request) -> Self::Future {
self.service.call(req)
}
}
/// Pipeline constructor
pub struct PipelineFactory<T> {
factory: T,
}
impl<T: ServiceFactory> PipelineFactory<T> {
/// Call another service after call to this one has resolved successfully.
pub fn and_then<F, U>(self, factory: F) -> PipelineFactory<AndThenServiceFactory<T, U>>
where
Self: Sized,
T::Config: Clone,
F: IntoServiceFactory<U>,
U: ServiceFactory<
Config = T::Config,
Request = T::Response,
Error = T::Error,
InitError = T::InitError,
>,
{
PipelineFactory {
factory: AndThenServiceFactory::new(self.factory, factory.into_factory()),
}
}
/// Apply function to specified service and use it as a next service in
/// chain.
///
/// Short version of `pipeline_factory(...).and_then(apply_fn_factory(...))`
pub fn and_then_apply_fn<U, I, F, Fut, Res, Err>(
self,
factory: I,
f: F,
) -> PipelineFactory<AndThenApplyFnFactory<T, U, F, Fut, Res, Err>>
where
Self: Sized,
T::Config: Clone,
I: IntoServiceFactory<U>,
U: ServiceFactory<Config = T::Config, InitError = T::InitError>,
F: FnMut(T::Response, &mut U::Service) -> Fut + Clone,
Fut: Future<Output = Result<Res, Err>>,
Err: From<T::Error> + From<U::Error>,
{
PipelineFactory {
factory: AndThenApplyFnFactory::new(self.factory, factory.into_factory(), f),
}
}
/// Create `NewService` to chain on a computation for when a call to the
/// service finished, passing the result of the call to the next
/// service `U`.
///
/// Note that this function consumes the receiving pipeline and returns a
/// wrapped version of it.
pub fn then<F, U>(self, factory: F) -> PipelineFactory<ThenServiceFactory<T, U>>
where
Self: Sized,
T::Config: Clone,
F: IntoServiceFactory<U>,
U: ServiceFactory<
Config = T::Config,
Request = Result<T::Response, T::Error>,
Error = T::Error,
InitError = T::InitError,
>,
{
PipelineFactory {
factory: ThenServiceFactory::new(self.factory, factory.into_factory()),
}
}
/// Map this service's output to a different type, returning a new service
/// of the resulting type.
pub fn map<F, R>(self, f: F) -> PipelineFactory<MapServiceFactory<T, F, R>>
where
Self: Sized,
F: FnMut(T::Response) -> R + Clone,
{
PipelineFactory {
factory: MapServiceFactory::new(self.factory, f),
}
}
/// Map this service's error to a different error, returning a new service.
pub fn map_err<F, E>(self, f: F) -> PipelineFactory<MapErrServiceFactory<T, F, E>>
where
Self: Sized,
F: Fn(T::Error) -> E + Clone,
{
PipelineFactory {
factory: MapErrServiceFactory::new(self.factory, f),
}
}
/// Map this factory's init error to a different error, returning a new service.
pub fn map_init_err<F, E>(self, f: F) -> PipelineFactory<MapInitErr<T, F, E>>
where
Self: Sized,
F: Fn(T::InitError) -> E + Clone,
{
PipelineFactory {
factory: MapInitErr::new(self.factory, f),
}
}
}
impl<T> Clone for PipelineFactory<T>
where
T: Clone,
{
fn clone(&self) -> Self {
PipelineFactory {
factory: self.factory.clone(),
}
}
}
impl<T: ServiceFactory> ServiceFactory for PipelineFactory<T> {
type Config = T::Config;
type Request = T::Request;
type Response = T::Response;
type Error = T::Error;
type Service = T::Service;
type InitError = T::InitError;
type Future = T::Future;
#[inline]
fn new_service(&self, cfg: T::Config) -> Self::Future {
self.factory.new_service(cfg)
}
}