1
0
mirror of https://github.com/fafhrd91/actix-web synced 2025-01-16 13:22:01 +01:00
actix-web/guide/src/qs_4.md

311 lines
9.2 KiB
Markdown
Raw Normal View History

2017-12-01 23:42:21 -08:00
# Handler
2018-03-28 22:16:01 +02:00
A request handler can be any object that implements
2017-12-26 11:19:08 -08:00
[*Handler trait*](../actix_web/dev/trait.Handler.html).
2018-03-28 22:16:01 +02:00
Request handling happens in two stages. First the handler object is called.
Handler can return any object that implements
2017-12-14 09:43:42 -08:00
[*Responder trait*](../actix_web/trait.Responder.html#foreign-impls).
2018-03-28 22:16:01 +02:00
Then `respond_to()` is called on the returned object. And finally
result of the `respond_to()` call is converted to a `Reply` object.
2017-12-08 15:25:37 -08:00
2018-03-28 22:16:01 +02:00
By default actix provides `Responder` implementations for some standard types,
2017-12-01 23:42:21 -08:00
like `&'static str`, `String`, etc.
2018-03-28 22:16:01 +02:00
For a complete list of implementations, check
2017-12-26 11:19:08 -08:00
[*Responder documentation*](../actix_web/trait.Responder.html#foreign-impls).
2017-12-01 23:42:21 -08:00
2017-12-08 15:25:37 -08:00
Examples of valid handlers:
2017-12-01 23:42:21 -08:00
```rust,ignore
fn index(req: HttpRequest) -> &'static str {
"Hello world!"
}
```
```rust,ignore
fn index(req: HttpRequest) -> String {
"Hello world!".to_owned()
}
```
```rust,ignore
fn index(req: HttpRequest) -> Bytes {
Bytes::from_static("Hello world!")
}
```
```rust,ignore
fn index(req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
...
}
```
2017-12-26 09:00:45 -08:00
Some notes on shared application state and handler state. If you noticed
*Handler* trait is generic over *S*, which defines application state type. So
2018-03-28 22:16:01 +02:00
application state is accessible from handler with the `HttpRequest::state()` method.
But state is accessible as a read-only reference - if you need mutable access to state
you have to implement it yourself. On other hand, handler can mutably access its own state
as the `handle` method takes a mutable reference to *self*. Beware, actix creates multiple copies
2017-12-26 09:00:45 -08:00
of application state and handlers, unique for each thread, so if you run your
2018-03-28 22:16:01 +02:00
application in several threads, actix will create the same amount as number of threads
2017-12-26 09:00:45 -08:00
of application state objects and handler objects.
2018-03-28 22:16:01 +02:00
Here is an example of a handler that stores the number of processed requests:
2017-12-26 09:00:45 -08:00
```rust
# extern crate actix_web;
use actix_web::{Application, HttpRequest, HttpResponse, dev::Handler};
2017-12-26 09:00:45 -08:00
struct MyHandler(usize);
impl<S> Handler<S> for MyHandler {
type Result = HttpResponse;
/// Handle request
fn handle(&mut self, req: HttpRequest<S>) -> Self::Result {
self.0 += 1;
HttpResponse::Ok().into()
2017-12-26 09:00:45 -08:00
}
}
# fn main() {}
```
2018-03-28 22:16:01 +02:00
This handler will work, but `self.0` will be different depending on the number of threads and
number of requests processed per thread. A proper implementation would use `Arc` and `AtomicUsize`
2017-12-26 09:00:45 -08:00
```rust
# extern crate actix;
# extern crate actix_web;
use actix_web::{server, Application, HttpRequest, HttpResponse, dev::Handler};
2017-12-26 09:00:45 -08:00
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
struct MyHandler(Arc<AtomicUsize>);
impl<S> Handler<S> for MyHandler {
type Result = HttpResponse;
/// Handle request
fn handle(&mut self, req: HttpRequest<S>) -> Self::Result {
self.0.fetch_add(1, Ordering::Relaxed);
HttpResponse::Ok().into()
2017-12-26 09:00:45 -08:00
}
}
fn main() {
let sys = actix::System::new("example");
let inc = Arc::new(AtomicUsize::new(0));
server::new(
2018-03-28 22:16:01 +02:00
move || {
2017-12-26 09:00:45 -08:00
let cloned = inc.clone();
Application::new()
2017-12-31 17:26:32 -08:00
.resource("/", move |r| r.h(MyHandler(cloned)))
2017-12-26 09:00:45 -08:00
})
.bind("127.0.0.1:8088").unwrap()
.start();
println!("Started http server: 127.0.0.1:8088");
2018-02-12 22:56:47 -08:00
# actix::Arbiter::system().do_send(actix::msgs::SystemExit(0));
2017-12-26 09:00:45 -08:00
let _ = sys.run();
}
```
2017-12-26 11:19:08 -08:00
Be careful with synchronization primitives like *Mutex* or *RwLock*. Actix web framework
2018-03-28 22:16:01 +02:00
handles requests asynchronously; by blocking thread execution all concurrent
request handling processes would block. If you need to share or update some state
from multiple threads consider using the [actix](https://actix.github.io/actix/actix/) actor system.
2017-12-26 11:19:08 -08:00
2017-12-08 15:25:37 -08:00
## Response with custom type
2017-12-01 23:42:21 -08:00
2018-03-28 22:16:01 +02:00
To return a custom type directly from a handler function, the type needs to implement the `Responder` trait.
Let's create a response for a custom type that serializes to an `application/json` response:
2017-12-01 23:42:21 -08:00
```rust
2017-12-06 11:00:39 -08:00
# extern crate actix;
# extern crate actix_web;
2017-12-01 23:42:21 -08:00
extern crate serde;
extern crate serde_json;
#[macro_use] extern crate serde_derive;
2018-03-30 17:31:18 -07:00
use actix_web::{Application, HttpServer, HttpRequest, HttpResponse, Error, Responder, http};
2017-12-01 23:42:21 -08:00
#[derive(Serialize)]
struct MyObj {
2017-12-08 15:25:37 -08:00
name: &'static str,
2017-12-01 23:42:21 -08:00
}
2017-12-20 23:27:30 -08:00
/// Responder
2017-12-14 09:43:42 -08:00
impl Responder for MyObj {
type Item = HttpResponse;
type Error = Error;
2018-03-30 17:31:18 -07:00
fn respond_to(self, req: HttpRequest) -> Result<HttpResponse, Error> {
let body = serde_json::to_string(&self)?;
2017-12-01 23:42:21 -08:00
// Create response and set content type
Ok(HttpResponse::Ok()
2017-12-01 23:42:21 -08:00
.content_type("application/json")
.body(body))
2017-12-01 23:42:21 -08:00
}
}
2017-12-20 23:27:30 -08:00
/// Because `MyObj` implements `Responder`, it is possible to return it directly
2017-12-08 15:25:37 -08:00
fn index(req: HttpRequest) -> MyObj {
MyObj{name: "user"}
}
2017-12-01 23:42:21 -08:00
fn main() {
let sys = actix::System::new("example");
HttpServer::new(
|| Application::new()
2018-03-30 17:31:18 -07:00
.resource("/", |r| r.method(http::Method::GET).f(index)))
2017-12-17 12:35:04 -08:00
.bind("127.0.0.1:8088").unwrap()
.start();
2017-12-01 23:42:21 -08:00
println!("Started http server: 127.0.0.1:8088");
2018-02-12 22:56:47 -08:00
# actix::Arbiter::system().do_send(actix::msgs::SystemExit(0));
2017-12-01 23:42:21 -08:00
let _ = sys.run();
}
```
## Async handlers
2018-03-28 22:16:01 +02:00
There are two different types of async handlers.
2017-12-01 23:42:21 -08:00
2018-03-28 22:16:01 +02:00
Response objects can be generated asynchronously or more precisely, any type
that implements the [*Responder*](../actix_web/trait.Responder.html) trait. In this case the handler must return a `Future` object that resolves to the *Responder* type, i.e:
2017-12-01 23:42:21 -08:00
2017-12-04 16:09:22 -08:00
```rust
# extern crate actix_web;
# extern crate futures;
# extern crate bytes;
# use actix_web::*;
# use bytes::Bytes;
# use futures::stream::once;
2018-03-21 21:02:04 -07:00
# use futures::future::{Future, result};
fn index(req: HttpRequest) -> Box<Future<Item=HttpResponse, Error=Error>> {
2017-12-04 16:09:22 -08:00
result(Ok(HttpResponse::Ok()
.content_type("text/html")
.body(format!("Hello!"))))
2018-03-21 21:02:04 -07:00
.responder()
2017-12-01 23:42:21 -08:00
}
2018-03-21 21:02:04 -07:00
fn index2(req: HttpRequest) -> Box<Future<Item=&'static str, Error=Error>> {
2017-12-20 12:51:39 -08:00
result(Ok("Welcome!"))
2018-03-21 21:02:04 -07:00
.responder()
2017-12-20 12:51:39 -08:00
}
2017-12-04 16:09:22 -08:00
fn main() {
Application::new()
.resource("/async", |r| r.route().a(index))
2017-12-20 12:51:39 -08:00
.resource("/", |r| r.route().a(index2))
2017-12-04 16:09:22 -08:00
.finish();
}
```
2017-12-01 23:42:21 -08:00
2018-03-28 22:16:01 +02:00
Or the response body can be generated asynchronously. In this case body
2017-12-01 23:42:21 -08:00
must implement stream trait `Stream<Item=Bytes, Error=Error>`, i.e:
2017-12-04 16:09:22 -08:00
```rust
# extern crate actix_web;
# extern crate futures;
# extern crate bytes;
# use actix_web::*;
# use bytes::Bytes;
# use futures::stream::once;
2017-12-01 23:42:21 -08:00
fn index(req: HttpRequest) -> HttpResponse {
2017-12-04 16:09:22 -08:00
let body = once(Ok(Bytes::from_static(b"test")));
2017-12-01 23:42:21 -08:00
2017-12-04 16:09:22 -08:00
HttpResponse::Ok()
2017-12-01 23:42:21 -08:00
.content_type("application/json")
.body(Body::Streaming(Box::new(body)))
2017-12-01 23:42:21 -08:00
}
fn main() {
Application::new()
.resource("/async", |r| r.f(index))
2017-12-01 23:42:21 -08:00
.finish();
}
```
2018-03-28 22:16:01 +02:00
Both methods can be combined. (i.e Async response with streaming body)
2018-01-22 20:10:05 -08:00
2018-03-28 22:16:01 +02:00
It is possible to return a `Result` where the `Result::Item` type can be `Future`.
In this example the `index` handler can return an error immediately or return a
2018-03-21 21:02:04 -07:00
future that resolves to a `HttpResponse`.
```rust
# extern crate actix_web;
# extern crate futures;
# extern crate bytes;
# use actix_web::*;
# use bytes::Bytes;
# use futures::stream::once;
# use futures::future::{Future, result};
fn index(req: HttpRequest) -> Result<Box<Future<Item=HttpResponse, Error=Error>>, Error> {
if is_error() {
Err(error::ErrorBadRequest("bad request"))
} else {
Ok(Box::new(
result(Ok(HttpResponse::Ok()
2018-03-21 21:02:04 -07:00
.content_type("text/html")
.body(format!("Hello!"))))))
2018-03-21 21:02:04 -07:00
}
}
#
# fn is_error() -> bool { true }
# fn main() {
# Application::new()
# .resource("/async", |r| r.route().f(index))
# .finish();
# }
```
2018-03-10 10:12:44 -08:00
## Different return types (Either)
Sometimes you need to return different types of responses. For example
2018-03-11 09:36:54 -07:00
you can do error check and return error and return async response otherwise.
2018-03-10 10:12:44 -08:00
Or any result that requires two different types.
2018-03-28 22:16:01 +02:00
For this case the [*Either*](../actix_web/enum.Either.html) type can be used.
*Either* allows combining two different responder types into a single type.
2018-03-10 10:12:44 -08:00
```rust
# extern crate actix_web;
# extern crate futures;
# use actix_web::*;
# use futures::future::Future;
use futures::future::result;
use actix_web::{Either, Error, HttpResponse};
2018-03-10 10:12:44 -08:00
type RegisterResult = Either<HttpResponse, Box<Future<Item=HttpResponse, Error=Error>>>;
fn index(req: HttpRequest) -> RegisterResult {
2018-03-11 09:28:22 -07:00
if is_a_variant() { // <- choose variant A
2018-03-10 10:12:44 -08:00
Either::A(
HttpResponse::BadRequest().body("Bad data"))
2018-03-10 10:12:44 -08:00
} else {
2018-03-11 09:28:22 -07:00
Either::B( // <- variant B
result(Ok(HttpResponse::Ok()
2018-03-10 10:12:44 -08:00
.content_type("text/html")
.body(format!("Hello!")))).responder())
2018-03-10 10:12:44 -08:00
}
}
2018-03-11 09:28:22 -07:00
# fn is_a_variant() -> bool { true }
# fn main() {
# Application::new()
# .resource("/register", |r| r.f(index))
# .finish();
# }
2018-03-10 10:12:44 -08:00
```
2018-01-22 20:10:05 -08:00
## Tokio core handle
2018-03-28 22:16:01 +02:00
Any actix web handler runs within a properly configured
2018-01-22 20:10:05 -08:00
[actix system](https://actix.github.io/actix/actix/struct.System.html)
and [arbiter](https://actix.github.io/actix/actix/struct.Arbiter.html).
2018-03-28 22:16:01 +02:00
You can always get access to the tokio handle via the
2018-01-22 20:10:05 -08:00
[Arbiter::handle()](https://actix.github.io/actix/actix/struct.Arbiter.html#method.handle)
method.