1
0
mirror of https://github.com/fafhrd91/actix-web synced 2025-07-01 16:55:08 +02:00

refactor types

This commit is contained in:
Nikolay Kim
2018-10-04 20:02:10 -07:00
parent b15b2dda22
commit 4ca711909b
15 changed files with 273 additions and 1623 deletions

259
src/h1/codec.rs Normal file
View File

@ -0,0 +1,259 @@
#![allow(unused_imports, unused_variables, dead_code)]
use std::io::{self, Write};
use bytes::{BufMut, Bytes, BytesMut};
use tokio_codec::{Decoder, Encoder};
use super::decoder::H1Decoder;
pub use super::decoder::InMessage;
use body::Body;
use error::ParseError;
use helpers;
use http::header::{HeaderValue, CONNECTION, CONTENT_LENGTH, DATE, TRANSFER_ENCODING};
use http::Version;
use httpresponse::HttpResponse;
use request::RequestPool;
use server::output::{ResponseInfo, ResponseLength};
pub enum OutMessage {
Response(HttpResponse),
Payload(Bytes),
}
/// HTTP/1 Codec
pub struct Codec {
decoder: H1Decoder,
encoder: H1Writer,
}
impl Codec {
/// Create HTTP/1 codec
pub fn new() -> Self {
Codec::with_pool(RequestPool::pool())
}
/// Create HTTP/1 codec with request's pool
pub(crate) fn with_pool(pool: &'static RequestPool) -> Self {
Codec {
decoder: H1Decoder::new(pool),
encoder: H1Writer::new(),
}
}
}
impl Decoder for Codec {
type Item = InMessage;
type Error = ParseError;
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.decoder.decode(src)
}
}
impl Encoder for Codec {
type Item = OutMessage;
type Error = io::Error;
fn encode(
&mut self, item: Self::Item, dst: &mut BytesMut,
) -> Result<(), Self::Error> {
match item {
OutMessage::Response(res) => {
self.encoder.encode(res, dst)?;
}
OutMessage::Payload(bytes) => {
dst.extend_from_slice(&bytes);
}
}
Ok(())
}
}
bitflags! {
struct Flags: u8 {
const STARTED = 0b0000_0001;
const UPGRADE = 0b0000_0010;
const KEEPALIVE = 0b0000_0100;
const DISCONNECTED = 0b0000_1000;
}
}
const AVERAGE_HEADER_SIZE: usize = 30;
struct H1Writer {
flags: Flags,
written: u64,
headers_size: u32,
}
impl H1Writer {
fn new() -> H1Writer {
H1Writer {
flags: Flags::empty(),
written: 0,
headers_size: 0,
}
}
fn written(&self) -> u64 {
self.written
}
pub fn reset(&mut self) {
self.written = 0;
self.flags = Flags::KEEPALIVE;
}
pub fn upgrade(&self) -> bool {
self.flags.contains(Flags::UPGRADE)
}
pub fn keepalive(&self) -> bool {
self.flags.contains(Flags::KEEPALIVE) && !self.flags.contains(Flags::UPGRADE)
}
fn encode(
&mut self, mut msg: HttpResponse, buffer: &mut BytesMut,
) -> io::Result<()> {
// prepare task
let info = ResponseInfo::new(false); // req.inner.method == Method::HEAD);
//if msg.keep_alive().unwrap_or_else(|| req.keep_alive()) {
//self.flags = Flags::STARTED | Flags::KEEPALIVE;
//} else {
self.flags = Flags::STARTED;
//}
// Connection upgrade
let version = msg.version().unwrap_or_else(|| Version::HTTP_11); //req.inner.version);
if msg.upgrade() {
self.flags.insert(Flags::UPGRADE);
msg.headers_mut()
.insert(CONNECTION, HeaderValue::from_static("upgrade"));
}
// keep-alive
else if self.flags.contains(Flags::KEEPALIVE) {
if version < Version::HTTP_11 {
msg.headers_mut()
.insert(CONNECTION, HeaderValue::from_static("keep-alive"));
}
} else if version >= Version::HTTP_11 {
msg.headers_mut()
.insert(CONNECTION, HeaderValue::from_static("close"));
}
let body = msg.replace_body(Body::Empty);
// render message
{
let reason = msg.reason().as_bytes();
if let Body::Binary(ref bytes) = body {
buffer.reserve(
256 + msg.headers().len() * AVERAGE_HEADER_SIZE
+ bytes.len()
+ reason.len(),
);
} else {
buffer.reserve(
256 + msg.headers().len() * AVERAGE_HEADER_SIZE + reason.len(),
);
}
// status line
helpers::write_status_line(version, msg.status().as_u16(), buffer);
buffer.extend_from_slice(reason);
// content length
match info.length {
ResponseLength::Chunked => {
buffer.extend_from_slice(b"\r\ntransfer-encoding: chunked\r\n")
}
ResponseLength::Zero => {
buffer.extend_from_slice(b"\r\ncontent-length: 0\r\n")
}
ResponseLength::Length(len) => {
helpers::write_content_length(len, buffer)
}
ResponseLength::Length64(len) => {
buffer.extend_from_slice(b"\r\ncontent-length: ");
write!(buffer.writer(), "{}", len)?;
buffer.extend_from_slice(b"\r\n");
}
ResponseLength::None => buffer.extend_from_slice(b"\r\n"),
}
if let Some(ce) = info.content_encoding {
buffer.extend_from_slice(b"content-encoding: ");
buffer.extend_from_slice(ce.as_ref());
buffer.extend_from_slice(b"\r\n");
}
// write headers
let mut pos = 0;
let mut has_date = false;
let mut remaining = buffer.remaining_mut();
let mut buf = unsafe { &mut *(buffer.bytes_mut() as *mut [u8]) };
for (key, value) in msg.headers() {
match *key {
TRANSFER_ENCODING => continue,
CONTENT_LENGTH => match info.length {
ResponseLength::None => (),
_ => continue,
},
DATE => {
has_date = true;
}
_ => (),
}
let v = value.as_ref();
let k = key.as_str().as_bytes();
let len = k.len() + v.len() + 4;
if len > remaining {
unsafe {
buffer.advance_mut(pos);
}
pos = 0;
buffer.reserve(len);
remaining = buffer.remaining_mut();
unsafe {
buf = &mut *(buffer.bytes_mut() as *mut _);
}
}
buf[pos..pos + k.len()].copy_from_slice(k);
pos += k.len();
buf[pos..pos + 2].copy_from_slice(b": ");
pos += 2;
buf[pos..pos + v.len()].copy_from_slice(v);
pos += v.len();
buf[pos..pos + 2].copy_from_slice(b"\r\n");
pos += 2;
remaining -= len;
}
unsafe {
buffer.advance_mut(pos);
}
// optimized date header, set_date writes \r\n
if !has_date {
// self.settings.set_date(&mut buffer, true);
buffer.extend_from_slice(b"\r\n");
} else {
// msg eof
buffer.extend_from_slice(b"\r\n");
}
self.headers_size = buffer.len() as u32;
}
if let Body::Binary(bytes) = body {
self.written = bytes.len() as u64;
// buffer.write(bytes.as_ref())?;
buffer.extend_from_slice(bytes.as_ref());
} else {
// capacity, makes sense only for streaming or actor
// self.buffer_capacity = msg.write_buffer_capacity();
msg.replace_body(body);
}
Ok(())
}
}

499
src/h1/decoder.rs Normal file
View File

@ -0,0 +1,499 @@
use std::{io, mem};
use bytes::{Bytes, BytesMut};
use futures::{Async, Poll};
use httparse;
use error::ParseError;
use http::header::{HeaderName, HeaderValue};
use http::{header, HttpTryFrom, Method, Uri, Version};
use request::{MessageFlags, Request, RequestPool};
use uri::Url;
const MAX_BUFFER_SIZE: usize = 131_072;
const MAX_HEADERS: usize = 96;
pub(crate) struct H1Decoder {
decoder: Option<EncodingDecoder>,
pool: &'static RequestPool,
}
#[derive(Debug)]
pub enum InMessage {
Message(Request),
MessageWithPayload(Request),
Chunk(Bytes),
Eof,
}
impl H1Decoder {
pub fn new(pool: &'static RequestPool) -> H1Decoder {
H1Decoder {
pool,
decoder: None,
}
}
pub fn decode(
&mut self, src: &mut BytesMut,
) -> Result<Option<InMessage>, ParseError> {
// read payload
if self.decoder.is_some() {
match self.decoder.as_mut().unwrap().decode(src)? {
Async::Ready(Some(bytes)) => return Ok(Some(InMessage::Chunk(bytes))),
Async::Ready(None) => {
self.decoder.take();
return Ok(Some(InMessage::Eof));
}
Async::NotReady => return Ok(None),
}
}
match self.parse_message(src)? {
Async::Ready((msg, decoder)) => {
self.decoder = decoder;
if self.decoder.is_some() {
Ok(Some(InMessage::MessageWithPayload(msg)))
} else {
Ok(Some(InMessage::Message(msg)))
}
}
Async::NotReady => {
if src.len() >= MAX_BUFFER_SIZE {
error!("MAX_BUFFER_SIZE unprocessed data reached, closing");
Err(ParseError::TooLarge)
} else {
Ok(None)
}
}
}
}
fn parse_message(
&self, buf: &mut BytesMut,
) -> Poll<(Request, Option<EncodingDecoder>), ParseError> {
// Parse http message
let mut has_upgrade = false;
let mut chunked = false;
let mut content_length = None;
let msg = {
// Unsafe: we read only this data only after httparse parses headers into.
// performance bump for pipeline benchmarks.
let mut headers: [HeaderIndex; MAX_HEADERS] =
unsafe { mem::uninitialized() };
let (len, method, path, version, headers_len) = {
let mut parsed: [httparse::Header; MAX_HEADERS] =
unsafe { mem::uninitialized() };
let mut req = httparse::Request::new(&mut parsed);
match req.parse(buf)? {
httparse::Status::Complete(len) => {
let method = Method::from_bytes(req.method.unwrap().as_bytes())
.map_err(|_| ParseError::Method)?;
let path = Url::new(Uri::try_from(req.path.unwrap())?);
let version = if req.version.unwrap() == 1 {
Version::HTTP_11
} else {
Version::HTTP_10
};
HeaderIndex::record(buf, req.headers, &mut headers);
(len, method, path, version, req.headers.len())
}
httparse::Status::Partial => return Ok(Async::NotReady),
}
};
let slice = buf.split_to(len).freeze();
// convert headers
let mut msg = RequestPool::get(self.pool);
{
let inner = msg.inner_mut();
inner
.flags
.get_mut()
.set(MessageFlags::KEEPALIVE, version != Version::HTTP_10);
for idx in headers[..headers_len].iter() {
if let Ok(name) =
HeaderName::from_bytes(&slice[idx.name.0..idx.name.1])
{
// Unsafe: httparse check header value for valid utf-8
let value = unsafe {
HeaderValue::from_shared_unchecked(
slice.slice(idx.value.0, idx.value.1),
)
};
match name {
header::CONTENT_LENGTH => {
if let Ok(s) = value.to_str() {
if let Ok(len) = s.parse::<u64>() {
content_length = Some(len);
} else {
debug!("illegal Content-Length: {:?}", len);
return Err(ParseError::Header);
}
} else {
debug!("illegal Content-Length: {:?}", len);
return Err(ParseError::Header);
}
}
// transfer-encoding
header::TRANSFER_ENCODING => {
if let Ok(s) = value.to_str() {
chunked = s.to_lowercase().contains("chunked");
} else {
return Err(ParseError::Header);
}
}
// connection keep-alive state
header::CONNECTION => {
let ka = if let Ok(conn) = value.to_str() {
if version == Version::HTTP_10
&& conn.contains("keep-alive")
{
true
} else {
version == Version::HTTP_11 && !(conn
.contains("close")
|| conn.contains("upgrade"))
}
} else {
false
};
inner.flags.get_mut().set(MessageFlags::KEEPALIVE, ka);
}
header::UPGRADE => {
has_upgrade = true;
}
_ => (),
}
inner.headers.append(name, value);
} else {
return Err(ParseError::Header);
}
}
inner.url = path;
inner.method = method;
inner.version = version;
}
msg
};
// https://tools.ietf.org/html/rfc7230#section-3.3.3
let decoder = if chunked {
// Chunked encoding
Some(EncodingDecoder::chunked())
} else if let Some(len) = content_length {
// Content-Length
Some(EncodingDecoder::length(len))
} else if has_upgrade || msg.inner.method == Method::CONNECT {
// upgrade(websocket) or connect
Some(EncodingDecoder::eof())
} else {
None
};
Ok(Async::Ready((msg, decoder)))
}
}
#[derive(Clone, Copy)]
pub(crate) struct HeaderIndex {
pub(crate) name: (usize, usize),
pub(crate) value: (usize, usize),
}
impl HeaderIndex {
pub(crate) fn record(
bytes: &[u8], headers: &[httparse::Header], indices: &mut [HeaderIndex],
) {
let bytes_ptr = bytes.as_ptr() as usize;
for (header, indices) in headers.iter().zip(indices.iter_mut()) {
let name_start = header.name.as_ptr() as usize - bytes_ptr;
let name_end = name_start + header.name.len();
indices.name = (name_start, name_end);
let value_start = header.value.as_ptr() as usize - bytes_ptr;
let value_end = value_start + header.value.len();
indices.value = (value_start, value_end);
}
}
}
/// Decoders to handle different Transfer-Encodings.
///
/// If a message body does not include a Transfer-Encoding, it *should*
/// include a Content-Length header.
#[derive(Debug, Clone, PartialEq)]
pub struct EncodingDecoder {
kind: Kind,
}
impl EncodingDecoder {
pub fn length(x: u64) -> EncodingDecoder {
EncodingDecoder {
kind: Kind::Length(x),
}
}
pub fn chunked() -> EncodingDecoder {
EncodingDecoder {
kind: Kind::Chunked(ChunkedState::Size, 0),
}
}
pub fn eof() -> EncodingDecoder {
EncodingDecoder {
kind: Kind::Eof(false),
}
}
}
#[derive(Debug, Clone, PartialEq)]
enum Kind {
/// A Reader used when a Content-Length header is passed with a positive
/// integer.
Length(u64),
/// A Reader used when Transfer-Encoding is `chunked`.
Chunked(ChunkedState, u64),
/// A Reader used for responses that don't indicate a length or chunked.
///
/// Note: This should only used for `Response`s. It is illegal for a
/// `Request` to be made with both `Content-Length` and
/// `Transfer-Encoding: chunked` missing, as explained from the spec:
///
/// > If a Transfer-Encoding header field is present in a response and
/// > the chunked transfer coding is not the final encoding, the
/// > message body length is determined by reading the connection until
/// > it is closed by the server. If a Transfer-Encoding header field
/// > is present in a request and the chunked transfer coding is not
/// > the final encoding, the message body length cannot be determined
/// > reliably; the server MUST respond with the 400 (Bad Request)
/// > status code and then close the connection.
Eof(bool),
}
#[derive(Debug, PartialEq, Clone)]
enum ChunkedState {
Size,
SizeLws,
Extension,
SizeLf,
Body,
BodyCr,
BodyLf,
EndCr,
EndLf,
End,
}
impl EncodingDecoder {
pub fn decode(&mut self, body: &mut BytesMut) -> Poll<Option<Bytes>, io::Error> {
match self.kind {
Kind::Length(ref mut remaining) => {
if *remaining == 0 {
Ok(Async::Ready(None))
} else {
if body.is_empty() {
return Ok(Async::NotReady);
}
let len = body.len() as u64;
let buf;
if *remaining > len {
buf = body.take().freeze();
*remaining -= len;
} else {
buf = body.split_to(*remaining as usize).freeze();
*remaining = 0;
}
trace!("Length read: {}", buf.len());
Ok(Async::Ready(Some(buf)))
}
}
Kind::Chunked(ref mut state, ref mut size) => {
loop {
let mut buf = None;
// advances the chunked state
*state = try_ready!(state.step(body, size, &mut buf));
if *state == ChunkedState::End {
trace!("End of chunked stream");
return Ok(Async::Ready(None));
}
if let Some(buf) = buf {
return Ok(Async::Ready(Some(buf)));
}
if body.is_empty() {
return Ok(Async::NotReady);
}
}
}
Kind::Eof(ref mut is_eof) => {
if *is_eof {
Ok(Async::Ready(None))
} else if !body.is_empty() {
Ok(Async::Ready(Some(body.take().freeze())))
} else {
Ok(Async::NotReady)
}
}
}
}
}
macro_rules! byte (
($rdr:ident) => ({
if $rdr.len() > 0 {
let b = $rdr[0];
$rdr.split_to(1);
b
} else {
return Ok(Async::NotReady)
}
})
);
impl ChunkedState {
fn step(
&self, body: &mut BytesMut, size: &mut u64, buf: &mut Option<Bytes>,
) -> Poll<ChunkedState, io::Error> {
use self::ChunkedState::*;
match *self {
Size => ChunkedState::read_size(body, size),
SizeLws => ChunkedState::read_size_lws(body),
Extension => ChunkedState::read_extension(body),
SizeLf => ChunkedState::read_size_lf(body, size),
Body => ChunkedState::read_body(body, size, buf),
BodyCr => ChunkedState::read_body_cr(body),
BodyLf => ChunkedState::read_body_lf(body),
EndCr => ChunkedState::read_end_cr(body),
EndLf => ChunkedState::read_end_lf(body),
End => Ok(Async::Ready(ChunkedState::End)),
}
}
fn read_size(rdr: &mut BytesMut, size: &mut u64) -> Poll<ChunkedState, io::Error> {
let radix = 16;
match byte!(rdr) {
b @ b'0'...b'9' => {
*size *= radix;
*size += u64::from(b - b'0');
}
b @ b'a'...b'f' => {
*size *= radix;
*size += u64::from(b + 10 - b'a');
}
b @ b'A'...b'F' => {
*size *= radix;
*size += u64::from(b + 10 - b'A');
}
b'\t' | b' ' => return Ok(Async::Ready(ChunkedState::SizeLws)),
b';' => return Ok(Async::Ready(ChunkedState::Extension)),
b'\r' => return Ok(Async::Ready(ChunkedState::SizeLf)),
_ => {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size line: Invalid Size",
));
}
}
Ok(Async::Ready(ChunkedState::Size))
}
fn read_size_lws(rdr: &mut BytesMut) -> Poll<ChunkedState, io::Error> {
trace!("read_size_lws");
match byte!(rdr) {
// LWS can follow the chunk size, but no more digits can come
b'\t' | b' ' => Ok(Async::Ready(ChunkedState::SizeLws)),
b';' => Ok(Async::Ready(ChunkedState::Extension)),
b'\r' => Ok(Async::Ready(ChunkedState::SizeLf)),
_ => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size linear white space",
)),
}
}
fn read_extension(rdr: &mut BytesMut) -> Poll<ChunkedState, io::Error> {
match byte!(rdr) {
b'\r' => Ok(Async::Ready(ChunkedState::SizeLf)),
_ => Ok(Async::Ready(ChunkedState::Extension)), // no supported extensions
}
}
fn read_size_lf(
rdr: &mut BytesMut, size: &mut u64,
) -> Poll<ChunkedState, io::Error> {
match byte!(rdr) {
b'\n' if *size > 0 => Ok(Async::Ready(ChunkedState::Body)),
b'\n' if *size == 0 => Ok(Async::Ready(ChunkedState::EndCr)),
_ => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk size LF",
)),
}
}
fn read_body(
rdr: &mut BytesMut, rem: &mut u64, buf: &mut Option<Bytes>,
) -> Poll<ChunkedState, io::Error> {
trace!("Chunked read, remaining={:?}", rem);
let len = rdr.len() as u64;
if len == 0 {
Ok(Async::Ready(ChunkedState::Body))
} else {
let slice;
if *rem > len {
slice = rdr.take().freeze();
*rem -= len;
} else {
slice = rdr.split_to(*rem as usize).freeze();
*rem = 0;
}
*buf = Some(slice);
if *rem > 0 {
Ok(Async::Ready(ChunkedState::Body))
} else {
Ok(Async::Ready(ChunkedState::BodyCr))
}
}
}
fn read_body_cr(rdr: &mut BytesMut) -> Poll<ChunkedState, io::Error> {
match byte!(rdr) {
b'\r' => Ok(Async::Ready(ChunkedState::BodyLf)),
_ => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk body CR",
)),
}
}
fn read_body_lf(rdr: &mut BytesMut) -> Poll<ChunkedState, io::Error> {
match byte!(rdr) {
b'\n' => Ok(Async::Ready(ChunkedState::Size)),
_ => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk body LF",
)),
}
}
fn read_end_cr(rdr: &mut BytesMut) -> Poll<ChunkedState, io::Error> {
match byte!(rdr) {
b'\r' => Ok(Async::Ready(ChunkedState::EndLf)),
_ => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk end CR",
)),
}
}
fn read_end_lf(rdr: &mut BytesMut) -> Poll<ChunkedState, io::Error> {
match byte!(rdr) {
b'\n' => Ok(Async::Ready(ChunkedState::End)),
_ => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Invalid chunk end LF",
)),
}
}
}

415
src/h1/dispatcher.rs Normal file
View File

@ -0,0 +1,415 @@
// #![allow(unused_imports, unused_variables, dead_code)]
use std::collections::VecDeque;
use std::fmt::{Debug, Display};
use std::net::SocketAddr;
// use std::time::{Duration, Instant};
use actix_net::service::Service;
use futures::{Async, AsyncSink, Future, Poll, Sink, Stream};
use tokio_codec::Framed;
// use tokio_current_thread::spawn;
use tokio_io::{AsyncRead, AsyncWrite};
// use tokio_timer::Delay;
use error::{ParseError, PayloadError};
use payload::{Payload, PayloadStatus, PayloadWriter};
use body::Body;
use error::DispatchError;
use httpresponse::HttpResponse;
use request::{Request, RequestPool};
use server::input::PayloadType;
use super::codec::{Codec, InMessage, OutMessage};
const MAX_PIPELINED_MESSAGES: usize = 16;
bitflags! {
pub struct Flags: u8 {
const STARTED = 0b0000_0001;
const KEEPALIVE_ENABLED = 0b0000_0010;
const KEEPALIVE = 0b0000_0100;
const SHUTDOWN = 0b0000_1000;
const READ_DISCONNECTED = 0b0001_0000;
const WRITE_DISCONNECTED = 0b0010_0000;
const POLLED = 0b0100_0000;
const FLUSHED = 0b1000_0000;
}
}
/// Dispatcher for HTTP/1.1 protocol
pub struct Dispatcher<T, S: Service>
where
S::Error: Debug + Display,
{
service: S,
flags: Flags,
framed: Framed<T, Codec>,
error: Option<DispatchError<S::Error>>,
state: State<S>,
payload: Option<PayloadType>,
messages: VecDeque<Request>,
}
enum State<S: Service> {
None,
Response(S::Future),
SendResponse(Option<OutMessage>),
SendResponseWithPayload(Option<(OutMessage, Body)>),
Payload(Body),
}
impl<S: Service> State<S> {
fn is_empty(&self) -> bool {
if let State::None = self {
true
} else {
false
}
}
}
impl<T, S> Dispatcher<T, S>
where
T: AsyncRead + AsyncWrite,
S: Service<Request = Request, Response = HttpResponse>,
S::Error: Debug + Display,
{
/// Create http/1 dispatcher.
pub fn new(stream: T, service: S) -> Self {
let flags = Flags::FLUSHED;
let framed = Framed::new(stream, Codec::new());
Dispatcher {
payload: None,
state: State::None,
error: None,
messages: VecDeque::new(),
service,
flags,
framed,
}
}
#[inline]
fn can_read(&self) -> bool {
if self.flags.contains(Flags::READ_DISCONNECTED) {
return false;
}
if let Some(ref info) = self.payload {
info.need_read() == PayloadStatus::Read
} else {
true
}
}
// if checked is set to true, delay disconnect until all tasks have finished.
fn client_disconnected(&mut self, checked: bool) {
self.flags.insert(Flags::READ_DISCONNECTED);
if let Some(mut payload) = self.payload.take() {
payload.set_error(PayloadError::Incomplete);
}
// if !checked || self.tasks.is_empty() {
// self.flags
// .insert(Flags::WRITE_DISCONNECTED | Flags::FLUSHED);
// // notify tasks
// for mut task in self.tasks.drain(..) {
// task.disconnected();
// match task.poll_completed() {
// Ok(Async::NotReady) => {
// // spawn not completed task, it does not require access to io
// // at this point
// spawn(HttpHandlerTaskFut::new(task.into_task()));
// }
// Ok(Async::Ready(_)) => (),
// Err(err) => {
// error!("Unhandled application error: {}", err);
// }
// }
// }
// }
}
/// Flush stream
fn poll_flush(&mut self) -> Poll<(), DispatchError<S::Error>> {
if self.flags.contains(Flags::STARTED) && !self.flags.contains(Flags::FLUSHED) {
match self.framed.poll_complete() {
Ok(Async::NotReady) => Ok(Async::NotReady),
Err(err) => {
debug!("Error sending data: {}", err);
self.client_disconnected(false);
Err(err.into())
}
Ok(Async::Ready(_)) => {
// if payload is not consumed we can not use connection
if self.payload.is_some() && self.state.is_empty() {
return Err(DispatchError::PayloadIsNotConsumed);
}
self.flags.insert(Flags::FLUSHED);
Ok(Async::Ready(()))
}
}
} else {
Ok(Async::Ready(()))
}
}
pub(self) fn poll_handler(&mut self) -> Result<(), DispatchError<S::Error>> {
self.poll_io()?;
let mut retry = self.can_read();
// process
loop {
let state = match self.state {
State::None => loop {
break if let Some(msg) = self.messages.pop_front() {
let mut task = self.service.call(msg);
match task.poll() {
Ok(Async::Ready(res)) => {
if res.body().is_streaming() {
unimplemented!()
} else {
Some(Ok(State::SendResponse(Some(
OutMessage::Response(res),
))))
}
}
Ok(Async::NotReady) => Some(Ok(State::Response(task))),
Err(err) => Some(Err(DispatchError::Service(err))),
}
} else {
None
};
},
State::Payload(ref mut body) => unimplemented!(),
State::Response(ref mut fut) => {
match fut.poll() {
Ok(Async::Ready(res)) => {
if res.body().is_streaming() {
unimplemented!()
} else {
Some(Ok(State::SendResponse(Some(
OutMessage::Response(res),
))))
}
}
Ok(Async::NotReady) => None,
Err(err) => {
// it is not possible to recover from error
// during pipe handling, so just drop connection
Some(Err(DispatchError::Service(err)))
}
}
}
State::SendResponse(ref mut item) => {
let msg = item.take().expect("SendResponse is empty");
match self.framed.start_send(msg) {
Ok(AsyncSink::Ready) => {
self.flags.remove(Flags::FLUSHED);
Some(Ok(State::None))
}
Ok(AsyncSink::NotReady(msg)) => {
*item = Some(msg);
return Ok(());
}
Err(err) => Some(Err(DispatchError::Io(err))),
}
}
State::SendResponseWithPayload(ref mut item) => {
let (msg, body) = item.take().expect("SendResponse is empty");
match self.framed.start_send(msg) {
Ok(AsyncSink::Ready) => {
self.flags.remove(Flags::FLUSHED);
Some(Ok(State::Payload(body)))
}
Ok(AsyncSink::NotReady(msg)) => {
*item = Some((msg, body));
return Ok(());
}
Err(err) => Some(Err(DispatchError::Io(err))),
}
}
};
match state {
Some(Ok(state)) => self.state = state,
Some(Err(err)) => {
// error!("Unhandled error1: {}", err);
self.client_disconnected(false);
return Err(err);
}
None => {
// if read-backpressure is enabled and we consumed some data.
// we may read more dataand retry
if !retry && self.can_read() && self.poll_io()? {
retry = self.can_read();
continue;
}
break;
}
}
}
Ok(())
}
fn one_message(&mut self, msg: InMessage) -> Result<(), DispatchError<S::Error>> {
self.flags.insert(Flags::STARTED);
match msg {
InMessage::Message(msg) => {
// handle request early
if self.state.is_empty() {
let mut task = self.service.call(msg);
match task.poll() {
Ok(Async::Ready(res)) => {
if res.body().is_streaming() {
unimplemented!()
} else {
self.state =
State::SendResponse(Some(OutMessage::Response(res)));
}
}
Ok(Async::NotReady) => self.state = State::Response(task),
Err(err) => {
error!("Unhandled application error: {}", err);
self.client_disconnected(false);
return Err(DispatchError::Service(err));
}
}
} else {
self.messages.push_back(msg);
}
}
InMessage::MessageWithPayload(msg) => {
// payload
let (ps, pl) = Payload::new(false);
*msg.inner.payload.borrow_mut() = Some(pl);
self.payload = Some(PayloadType::new(&msg.inner.headers, ps));
self.messages.push_back(msg);
}
InMessage::Chunk(chunk) => {
if let Some(ref mut payload) = self.payload {
payload.feed_data(chunk);
} else {
error!("Internal server error: unexpected payload chunk");
self.flags.insert(Flags::READ_DISCONNECTED | Flags::STARTED);
// self.push_response_entry(StatusCode::INTERNAL_SERVER_ERROR);
self.error = Some(DispatchError::InternalError);
}
}
InMessage::Eof => {
if let Some(mut payload) = self.payload.take() {
payload.feed_eof();
} else {
error!("Internal server error: unexpected eof");
self.flags.insert(Flags::READ_DISCONNECTED | Flags::STARTED);
// self.push_response_entry(StatusCode::INTERNAL_SERVER_ERROR);
self.error = Some(DispatchError::InternalError);
}
}
}
Ok(())
}
pub(self) fn poll_io(&mut self) -> Result<bool, DispatchError<S::Error>> {
let mut updated = false;
if self.messages.len() < MAX_PIPELINED_MESSAGES {
'outer: loop {
match self.framed.poll() {
Ok(Async::Ready(Some(msg))) => {
updated = true;
self.one_message(msg)?;
}
Ok(Async::Ready(None)) => {
if self.flags.contains(Flags::READ_DISCONNECTED) {
self.client_disconnected(true);
}
break;
}
Ok(Async::NotReady) => break,
Err(e) => {
if let Some(mut payload) = self.payload.take() {
let e = match e {
ParseError::Io(e) => PayloadError::Io(e),
_ => PayloadError::EncodingCorrupted,
};
payload.set_error(e);
}
// Malformed requests should be responded with 400
// self.push_response_entry(StatusCode::BAD_REQUEST);
self.flags.insert(Flags::READ_DISCONNECTED | Flags::STARTED);
self.error = Some(DispatchError::MalformedRequest);
break;
}
}
}
}
Ok(updated)
}
}
impl<T, S> Future for Dispatcher<T, S>
where
T: AsyncRead + AsyncWrite,
S: Service<Request = Request, Response = HttpResponse>,
S::Error: Debug + Display,
{
type Item = ();
type Error = DispatchError<S::Error>;
#[inline]
fn poll(&mut self) -> Poll<(), Self::Error> {
// shutdown
if self.flags.contains(Flags::SHUTDOWN) {
if self.flags.contains(Flags::WRITE_DISCONNECTED) {
return Ok(Async::Ready(()));
}
try_ready!(self.poll_flush());
return Ok(AsyncWrite::shutdown(self.framed.get_mut())?);
}
// process incoming requests
if !self.flags.contains(Flags::WRITE_DISCONNECTED) {
self.poll_handler()?;
// flush stream
self.poll_flush()?;
// deal with keep-alive and stream eof (client-side write shutdown)
if self.state.is_empty() && self.flags.contains(Flags::FLUSHED) {
// handle stream eof
if self
.flags
.intersects(Flags::READ_DISCONNECTED | Flags::WRITE_DISCONNECTED)
{
return Ok(Async::Ready(()));
}
// no keep-alive
if self.flags.contains(Flags::STARTED)
&& (!self.flags.contains(Flags::KEEPALIVE_ENABLED)
|| !self.flags.contains(Flags::KEEPALIVE))
{
self.flags.insert(Flags::SHUTDOWN);
return self.poll();
}
}
Ok(Async::NotReady)
} else if let Some(err) = self.error.take() {
Err(err)
} else {
Ok(Async::Ready(()))
}
}
}

9
src/h1/mod.rs Normal file
View File

@ -0,0 +1,9 @@
//! HTTP/1 implementation
mod codec;
mod decoder;
mod dispatcher;
mod service;
pub use self::codec::Codec;
pub use self::dispatcher::Dispatcher;
pub use self::service::{H1Service, H1ServiceHandler};

125
src/h1/service.rs Normal file
View File

@ -0,0 +1,125 @@
use std::fmt::{Debug, Display};
use std::marker::PhantomData;
use std::time::Duration;
use actix_net::service::{IntoNewService, NewService, Service};
use futures::future::{ok, FutureResult};
use futures::{Async, Future, Poll};
use tokio_io::{AsyncRead, AsyncWrite};
use config::ServiceConfig;
use error::DispatchError;
use httpresponse::HttpResponse;
use request::Request;
use super::dispatcher::Dispatcher;
/// `NewService` implementation for HTTP1 transport
pub struct H1Service<T, S> {
srv: S,
cfg: ServiceConfig,
_t: PhantomData<T>,
}
impl<T, S> H1Service<T, S>
where
S: NewService,
{
/// Create new `HttpService` instance.
pub fn new<F: IntoNewService<S>>(cfg: ServiceConfig, service: F) -> Self {
H1Service {
cfg,
srv: service.into_new_service(),
_t: PhantomData,
}
}
}
impl<T, S> NewService for H1Service<T, S>
where
T: AsyncRead + AsyncWrite,
S: NewService<Request = Request, Response = HttpResponse> + Clone,
S::Service: Clone,
S::Error: Debug + Display,
{
type Request = T;
type Response = ();
type Error = DispatchError<S::Error>;
type InitError = S::InitError;
type Service = H1ServiceHandler<T, S::Service>;
type Future = H1ServiceResponse<T, S>;
fn new_service(&self) -> Self::Future {
H1ServiceResponse {
fut: self.srv.new_service(),
cfg: Some(self.cfg.clone()),
_t: PhantomData,
}
}
}
pub struct H1ServiceResponse<T, S: NewService> {
fut: S::Future,
cfg: Option<ServiceConfig>,
_t: PhantomData<T>,
}
impl<T, S> Future for H1ServiceResponse<T, S>
where
T: AsyncRead + AsyncWrite,
S: NewService<Request = Request, Response = HttpResponse>,
S::Service: Clone,
S::Error: Debug + Display,
{
type Item = H1ServiceHandler<T, S::Service>;
type Error = S::InitError;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let service = try_ready!(self.fut.poll());
Ok(Async::Ready(H1ServiceHandler::new(
self.cfg.take().unwrap(),
service,
)))
}
}
/// `Service` implementation for HTTP1 transport
pub struct H1ServiceHandler<T, S> {
srv: S,
cfg: ServiceConfig,
_t: PhantomData<T>,
}
impl<T, S> H1ServiceHandler<T, S>
where
S: Service<Request = Request, Response = HttpResponse> + Clone,
S::Error: Debug + Display,
{
fn new(cfg: ServiceConfig, srv: S) -> H1ServiceHandler<T, S> {
H1ServiceHandler {
srv,
cfg,
_t: PhantomData,
}
}
}
impl<T, S> Service for H1ServiceHandler<T, S>
where
T: AsyncRead + AsyncWrite,
S: Service<Request = Request, Response = HttpResponse> + Clone,
S::Error: Debug + Display,
{
type Request = T;
type Response = ();
type Error = DispatchError<S::Error>;
type Future = Dispatcher<T, S>;
fn poll_ready(&mut self) -> Poll<(), Self::Error> {
self.srv.poll_ready().map_err(|e| DispatchError::Service(e))
}
fn call(&mut self, req: Self::Request) -> Self::Future {
Dispatcher::new(req, self.srv.clone())
}
}