use std::{str, mem, ptr, slice}; use std::cell::RefCell; use std::fmt::{self, Write}; use std::rc::Rc; use std::ops::{Deref, DerefMut}; use std::collections::VecDeque; use time; use bytes::BytesMut; use http::header::HeaderValue; use httprequest::HttpMessage; // "Sun, 06 Nov 1994 08:49:37 GMT".len() pub const DATE_VALUE_LENGTH: usize = 29; pub fn date(dst: &mut BytesMut) { CACHED.with(|cache| { dst.extend_from_slice(cache.borrow().buffer()); }) } pub fn update_date() { CACHED.with(|cache| { cache.borrow_mut().update(); }); } struct CachedDate { bytes: [u8; DATE_VALUE_LENGTH], pos: usize, } thread_local!(static CACHED: RefCell = RefCell::new(CachedDate { bytes: [0; DATE_VALUE_LENGTH], pos: 0, })); impl CachedDate { fn buffer(&self) -> &[u8] { &self.bytes[..] } fn update(&mut self) { self.pos = 0; write!(self, "{}", time::at_utc(time::get_time()).rfc822()).unwrap(); assert_eq!(self.pos, DATE_VALUE_LENGTH); } } impl fmt::Write for CachedDate { fn write_str(&mut self, s: &str) -> fmt::Result { let len = s.len(); self.bytes[self.pos..self.pos + len].copy_from_slice(s.as_bytes()); self.pos += len; Ok(()) } } /// Internal use only! unsafe #[derive(Debug)] pub(crate) struct SharedBytesPool(RefCell>>); impl SharedBytesPool { pub fn new() -> SharedBytesPool { SharedBytesPool(RefCell::new(VecDeque::with_capacity(128))) } pub fn get_bytes(&self) -> Rc { if let Some(bytes) = self.0.borrow_mut().pop_front() { bytes } else { Rc::new(BytesMut::new()) } } pub fn release_bytes(&self, mut bytes: Rc) { if self.0.borrow().len() < 128 { Rc::get_mut(&mut bytes).unwrap().take(); self.0.borrow_mut().push_front(bytes); } } } #[derive(Debug)] pub(crate) struct SharedBytes( Option>, Option>); impl Drop for SharedBytes { fn drop(&mut self) { if let Some(ref pool) = self.1 { if let Some(bytes) = self.0.take() { if Rc::strong_count(&bytes) == 1 { pool.release_bytes(bytes); } } } } } impl SharedBytes { pub fn empty() -> Self { SharedBytes(None, None) } pub fn new(bytes: Rc, pool: Rc) -> SharedBytes { SharedBytes(Some(bytes), Some(pool)) } #[inline] #[allow(mutable_transmutes)] #[cfg_attr(feature = "cargo-clippy", allow(mut_from_ref))] pub fn get_mut(&self) -> &mut BytesMut { let r: &BytesMut = self.0.as_ref().unwrap().as_ref(); unsafe{mem::transmute(r)} } #[inline] pub fn get_ref(&self) -> &BytesMut { self.0.as_ref().unwrap() } } impl Default for SharedBytes { fn default() -> Self { SharedBytes(Some(Rc::new(BytesMut::new())), None) } } impl Clone for SharedBytes { fn clone(&self) -> SharedBytes { SharedBytes(self.0.clone(), self.1.clone()) } } /// Internal use only! unsafe pub(crate) struct SharedMessagePool(RefCell>>); impl SharedMessagePool { pub fn new() -> SharedMessagePool { SharedMessagePool(RefCell::new(VecDeque::with_capacity(128))) } pub fn get(&self) -> Rc { if let Some(msg) = self.0.borrow_mut().pop_front() { msg } else { Rc::new(HttpMessage::default()) } } pub fn release(&self, mut msg: Rc) { if self.0.borrow().len() < 128 { Rc::get_mut(&mut msg).unwrap().reset(); self.0.borrow_mut().push_front(msg); } } } pub(crate) struct SharedHttpMessage( Option>, Option>); impl Drop for SharedHttpMessage { fn drop(&mut self) { if let Some(ref pool) = self.1 { if let Some(msg) = self.0.take() { if Rc::strong_count(&msg) == 1 { pool.release(msg); } } } } } impl Deref for SharedHttpMessage { type Target = HttpMessage; fn deref(&self) -> &HttpMessage { self.get_ref() } } impl DerefMut for SharedHttpMessage { fn deref_mut(&mut self) -> &mut HttpMessage { self.get_mut() } } impl Clone for SharedHttpMessage { fn clone(&self) -> SharedHttpMessage { SharedHttpMessage(self.0.clone(), self.1.clone()) } } impl Default for SharedHttpMessage { fn default() -> SharedHttpMessage { SharedHttpMessage(Some(Rc::new(HttpMessage::default())), None) } } impl SharedHttpMessage { pub fn from_message(msg: HttpMessage) -> SharedHttpMessage { SharedHttpMessage(Some(Rc::new(msg)), None) } pub fn new(msg: Rc, pool: Rc) -> SharedHttpMessage { SharedHttpMessage(Some(msg), Some(pool)) } #[inline(always)] #[allow(mutable_transmutes)] #[cfg_attr(feature = "cargo-clippy", allow(mut_from_ref, inline_always))] pub fn get_mut(&self) -> &mut HttpMessage { let r: &HttpMessage = self.0.as_ref().unwrap().as_ref(); unsafe{mem::transmute(r)} } #[inline] pub fn get_ref(&self) -> &HttpMessage { self.0.as_ref().unwrap() } } const DEC_DIGITS_LUT: &[u8] = b"0001020304050607080910111213141516171819\ 2021222324252627282930313233343536373839\ 4041424344454647484950515253545556575859\ 6061626364656667686970717273747576777879\ 8081828384858687888990919293949596979899"; pub(crate) fn convert_u16(mut n: u16, bytes: &mut BytesMut) { let mut buf: [u8; 39] = unsafe { mem::uninitialized() }; let mut curr = buf.len() as isize; let buf_ptr = buf.as_mut_ptr(); let lut_ptr = DEC_DIGITS_LUT.as_ptr(); unsafe { // need at least 16 bits for the 4-characters-at-a-time to work. if mem::size_of::() >= 2 { // eagerly decode 4 characters at a time while n >= 10_000 { let rem = (n % 10_000) as isize; n /= 10_000; let d1 = (rem / 100) << 1; let d2 = (rem % 100) << 1; curr -= 4; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2); } } // if we reach here numbers are <= 9999, so at most 4 chars long let mut n = n as isize; // possibly reduce 64bit math // decode 2 more chars, if > 2 chars if n >= 100 { let d1 = (n % 100) << 1; n /= 100; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } // decode last 1 or 2 chars if n < 10 { curr -= 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; } else { let d1 = n << 1; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } } unsafe { bytes.extend_from_slice( slice::from_raw_parts(buf_ptr.offset(curr), buf.len() - curr as usize)); } } pub(crate) fn convert_into_header(mut n: usize) -> HeaderValue { let mut curr: isize = 39; let mut buf: [u8; 39] = unsafe { mem::uninitialized() }; let buf_ptr = buf.as_mut_ptr(); let lut_ptr = DEC_DIGITS_LUT.as_ptr(); unsafe { // need at least 16 bits for the 4-characters-at-a-time to work. if mem::size_of::() >= 2 { // eagerly decode 4 characters at a time while n >= 10_000 { let rem = (n % 10_000) as isize; n /= 10_000; let d1 = (rem / 100) << 1; let d2 = (rem % 100) << 1; curr -= 4; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2); } } // if we reach here numbers are <= 9999, so at most 4 chars long let mut n = n as isize; // possibly reduce 64bit math // decode 2 more chars, if > 2 chars if n >= 100 { let d1 = (n % 100) << 1; n /= 100; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } // decode last 1 or 2 chars if n < 10 { curr -= 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; } else { let d1 = n << 1; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } } unsafe { HeaderValue::from_bytes( slice::from_raw_parts(buf_ptr.offset(curr), buf.len() - curr as usize)).unwrap() } } #[test] fn test_date_len() { assert_eq!(DATE_VALUE_LENGTH, "Sun, 06 Nov 1994 08:49:37 GMT".len()); } #[test] fn test_date() { let mut buf1 = BytesMut::new(); date(&mut buf1); let mut buf2 = BytesMut::new(); date(&mut buf2); assert_eq!(buf1, buf2); }