//! This is code from [Tungstenite project](https://github.com/snapview/tungstenite-rs) #![cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))] use std::ptr::copy_nonoverlapping; use std::slice; // Holds a slice guaranteed to be shorter than 8 bytes struct ShortSlice<'a>(&'a mut [u8]); impl<'a> ShortSlice<'a> { unsafe fn new(slice: &'a mut [u8]) -> Self { // Sanity check for debug builds debug_assert!(slice.len() < 8); ShortSlice(slice) } fn len(&self) -> usize { self.0.len() } } /// Faster version of `apply_mask()` which operates on 8-byte blocks. #[inline] #[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_lossless))] pub(crate) fn apply_mask(buf: &mut [u8], mask_u32: u32) { // Extend the mask to 64 bits let mut mask_u64 = ((mask_u32 as u64) << 32) | (mask_u32 as u64); // Split the buffer into three segments let (head, mid, tail) = align_buf(buf); // Initial unaligned segment let head_len = head.len(); if head_len > 0 { xor_short(head, mask_u64); if cfg!(target_endian = "big") { mask_u64 = mask_u64.rotate_left(8 * head_len as u32); } else { mask_u64 = mask_u64.rotate_right(8 * head_len as u32); } } // Aligned segment for v in mid { *v ^= mask_u64; } // Final unaligned segment if tail.len() > 0 { xor_short(tail, mask_u64); } } #[inline] // TODO: copy_nonoverlapping here compiles to call memcpy. While it is not so // inefficient, it could be done better. The compiler does not understand that // a `ShortSlice` must be smaller than a u64. #[cfg_attr( feature = "cargo-clippy", allow(clippy::needless_pass_by_value) )] fn xor_short(buf: ShortSlice, mask: u64) { // Unsafe: we know that a `ShortSlice` fits in a u64 unsafe { let (ptr, len) = (buf.0.as_mut_ptr(), buf.0.len()); let mut b: u64 = 0; #[allow(trivial_casts)] copy_nonoverlapping(ptr, &mut b as *mut _ as *mut u8, len); b ^= mask; #[allow(trivial_casts)] copy_nonoverlapping(&b as *const _ as *const u8, ptr, len); } } #[inline] // Unsafe: caller must ensure the buffer has the correct size and alignment unsafe fn cast_slice(buf: &mut [u8]) -> &mut [u64] { // Assert correct size and alignment in debug builds debug_assert!(buf.len().trailing_zeros() >= 3); debug_assert!((buf.as_ptr() as usize).trailing_zeros() >= 3); slice::from_raw_parts_mut(buf.as_mut_ptr() as *mut u64, buf.len() >> 3) } #[inline] // Splits a slice into three parts: an unaligned short head and tail, plus an aligned // u64 mid section. fn align_buf(buf: &mut [u8]) -> (ShortSlice, &mut [u64], ShortSlice) { let start_ptr = buf.as_ptr() as usize; let end_ptr = start_ptr + buf.len(); // Round *up* to next aligned boundary for start let start_aligned = (start_ptr + 7) & !0x7; // Round *down* to last aligned boundary for end let end_aligned = end_ptr & !0x7; if end_aligned >= start_aligned { // We have our three segments (head, mid, tail) let (tmp, tail) = buf.split_at_mut(end_aligned - start_ptr); let (head, mid) = tmp.split_at_mut(start_aligned - start_ptr); // Unsafe: we know the middle section is correctly aligned, and the outer // sections are smaller than 8 bytes unsafe { (ShortSlice::new(head), cast_slice(mid), ShortSlice(tail)) } } else { // We didn't cross even one aligned boundary! // Unsafe: The outer sections are smaller than 8 bytes unsafe { (ShortSlice::new(buf), &mut [], ShortSlice::new(&mut [])) } } } #[cfg(test)] mod tests { use super::apply_mask; use byteorder::{ByteOrder, LittleEndian}; /// A safe unoptimized mask application. fn apply_mask_fallback(buf: &mut [u8], mask: &[u8; 4]) { for (i, byte) in buf.iter_mut().enumerate() { *byte ^= mask[i & 3]; } } #[test] fn test_apply_mask() { let mask = [0x6d, 0xb6, 0xb2, 0x80]; let mask_u32: u32 = LittleEndian::read_u32(&mask); let unmasked = vec![ 0xf3, 0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x82, 0xff, 0xfe, 0x00, 0x17, 0x74, 0xf9, 0x12, 0x03, ]; // Check masking with proper alignment. { let mut masked = unmasked.clone(); apply_mask_fallback(&mut masked, &mask); let mut masked_fast = unmasked.clone(); apply_mask(&mut masked_fast, mask_u32); assert_eq!(masked, masked_fast); } // Check masking without alignment. { let mut masked = unmasked.clone(); apply_mask_fallback(&mut masked[1..], &mask); let mut masked_fast = unmasked.clone(); apply_mask(&mut masked_fast[1..], mask_u32); assert_eq!(masked, masked_fast); } } }