1
0
mirror of https://github.com/fafhrd91/actix-web synced 2025-02-01 03:20:07 +01:00
actix-web/actix-http/src/h1/dispatcher.rs

832 lines
28 KiB
Rust

use std::collections::VecDeque;
use std::time::Instant;
use std::{fmt, io};
use actix_codec::{AsyncRead, AsyncWrite, Decoder, Encoder};
use actix_service::Service;
use actix_utils::cloneable::CloneableService;
use bitflags::bitflags;
use bytes::{BufMut, BytesMut};
use futures::{Async, Future, Poll};
use log::{error, trace};
use tokio_timer::Delay;
use crate::body::{Body, BodySize, MessageBody, ResponseBody};
use crate::config::ServiceConfig;
use crate::error::{DispatchError, Error};
use crate::error::{ParseError, PayloadError};
use crate::request::Request;
use crate::response::Response;
use super::codec::Codec;
use super::payload::{Payload, PayloadSender, PayloadStatus};
use super::{Message, MessageType};
const LW_BUFFER_SIZE: usize = 4096;
const HW_BUFFER_SIZE: usize = 32_768;
const MAX_PIPELINED_MESSAGES: usize = 16;
bitflags! {
pub struct Flags: u8 {
const STARTED = 0b0000_0001;
const KEEPALIVE = 0b0000_0010;
const POLLED = 0b0000_0100;
const SHUTDOWN = 0b0000_1000;
const READ_DISCONNECT = 0b0001_0000;
const WRITE_DISCONNECT = 0b0010_0000;
const DROPPING = 0b0100_0000;
}
}
/// Dispatcher for HTTP/1.1 protocol
pub struct Dispatcher<T, S, B, X>
where
S: Service<Request = Request>,
S::Error: Into<Error>,
B: MessageBody,
X: Service<Request = Request, Response = Request>,
X::Error: Into<Error>,
{
inner: Option<InnerDispatcher<T, S, B, X>>,
}
struct InnerDispatcher<T, S, B, X>
where
S: Service<Request = Request>,
S::Error: Into<Error>,
B: MessageBody,
X: Service<Request = Request, Response = Request>,
X::Error: Into<Error>,
{
service: CloneableService<S>,
expect: CloneableService<X>,
flags: Flags,
error: Option<DispatchError>,
state: State<S, B, X>,
payload: Option<PayloadSender>,
messages: VecDeque<DispatcherMessage>,
ka_expire: Instant,
ka_timer: Option<Delay>,
io: T,
read_buf: BytesMut,
write_buf: BytesMut,
codec: Codec,
}
enum DispatcherMessage {
Item(Request),
Error(Response<()>),
}
enum State<S, B, X>
where
S: Service<Request = Request>,
X: Service<Request = Request, Response = Request>,
B: MessageBody,
{
None,
ExpectCall(X::Future),
ServiceCall(S::Future),
SendPayload(ResponseBody<B>),
}
impl<S, B, X> State<S, B, X>
where
S: Service<Request = Request>,
X: Service<Request = Request, Response = Request>,
B: MessageBody,
{
fn is_empty(&self) -> bool {
if let State::None = self {
true
} else {
false
}
}
fn is_call(&self) -> bool {
if let State::ServiceCall(_) = self {
true
} else {
false
}
}
}
impl<S, B, X> fmt::Debug for State<S, B, X>
where
S: Service<Request = Request>,
X: Service<Request = Request, Response = Request>,
B: MessageBody,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
State::None => write!(f, "State::None"),
State::ExpectCall(_) => write!(f, "State::ExceptCall"),
State::ServiceCall(_) => write!(f, "State::ServiceCall"),
State::SendPayload(_) => write!(f, "State::SendPayload"),
}
}
}
impl<T, S, B, X> Dispatcher<T, S, B, X>
where
T: AsyncRead + AsyncWrite,
S: Service<Request = Request>,
S::Error: Into<Error>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request = Request, Response = Request>,
X::Error: Into<Error>,
{
/// Create http/1 dispatcher.
pub fn new(
stream: T,
config: ServiceConfig,
service: CloneableService<S>,
expect: CloneableService<X>,
) -> Self {
Dispatcher::with_timeout(
stream,
Codec::new(config.clone()),
config,
BytesMut::with_capacity(HW_BUFFER_SIZE),
None,
service,
expect,
)
}
/// Create http/1 dispatcher with slow request timeout.
pub fn with_timeout(
io: T,
codec: Codec,
config: ServiceConfig,
read_buf: BytesMut,
timeout: Option<Delay>,
service: CloneableService<S>,
expect: CloneableService<X>,
) -> Self {
let keepalive = config.keep_alive_enabled();
let flags = if keepalive {
Flags::KEEPALIVE
} else {
Flags::empty()
};
// keep-alive timer
let (ka_expire, ka_timer) = if let Some(delay) = timeout {
(delay.deadline(), Some(delay))
} else if let Some(delay) = config.keep_alive_timer() {
(delay.deadline(), Some(delay))
} else {
(config.now(), None)
};
Dispatcher {
inner: Some(InnerDispatcher {
io,
codec,
read_buf,
write_buf: BytesMut::with_capacity(HW_BUFFER_SIZE),
payload: None,
state: State::None,
error: None,
messages: VecDeque::new(),
service,
expect,
flags,
ka_expire,
ka_timer,
}),
}
}
}
impl<T, S, B, X> InnerDispatcher<T, S, B, X>
where
T: AsyncRead + AsyncWrite,
S: Service<Request = Request>,
S::Error: Into<Error>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request = Request, Response = Request>,
X::Error: Into<Error>,
{
fn can_read(&self) -> bool {
if self.flags.contains(Flags::READ_DISCONNECT) {
false
} else if let Some(ref info) = self.payload {
info.need_read() == PayloadStatus::Read
} else {
true
}
}
// if checked is set to true, delay disconnect until all tasks have finished.
fn client_disconnected(&mut self) {
self.flags
.insert(Flags::READ_DISCONNECT | Flags::WRITE_DISCONNECT);
if let Some(mut payload) = self.payload.take() {
payload.set_error(PayloadError::Incomplete(None));
}
}
/// Flush stream
///
/// true - got whouldblock
/// false - didnt get whouldblock
fn poll_flush(&mut self) -> Result<bool, DispatchError> {
if self.write_buf.is_empty() {
return Ok(false);
}
let len = self.write_buf.len();
let mut written = 0;
while written < len {
match self.io.write(&self.write_buf[written..]) {
Ok(0) => {
return Err(DispatchError::Io(io::Error::new(
io::ErrorKind::WriteZero,
"",
)));
}
Ok(n) => {
written += n;
}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
if written > 0 {
let _ = self.write_buf.split_to(written);
}
return Ok(true);
}
Err(err) => return Err(DispatchError::Io(err)),
}
}
if written > 0 {
if written == self.write_buf.len() {
unsafe { self.write_buf.set_len(0) }
} else {
let _ = self.write_buf.split_to(written);
}
}
Ok(false)
}
fn send_response(
&mut self,
message: Response<()>,
body: ResponseBody<B>,
) -> Result<State<S, B, X>, DispatchError> {
self.codec
.encode(Message::Item((message, body.length())), &mut self.write_buf)
.map_err(|err| {
if let Some(mut payload) = self.payload.take() {
payload.set_error(PayloadError::Incomplete(None));
}
DispatchError::Io(err)
})?;
self.flags.set(Flags::KEEPALIVE, self.codec.keepalive());
match body.length() {
BodySize::None | BodySize::Empty => Ok(State::None),
_ => Ok(State::SendPayload(body)),
}
}
fn send_continue(&mut self) {
self.write_buf
.extend_from_slice(b"HTTP/1.1 100 Continue\r\n\r\n");
}
fn poll_response(&mut self) -> Result<bool, DispatchError> {
loop {
let state = match self.state {
State::None => match self.messages.pop_front() {
Some(DispatcherMessage::Item(req)) => {
Some(self.handle_request(req)?)
}
Some(DispatcherMessage::Error(res)) => {
Some(self.send_response(res, ResponseBody::Other(Body::Empty))?)
}
None => None,
},
State::ExpectCall(ref mut fut) => match fut.poll() {
Ok(Async::Ready(req)) => {
self.send_continue();
self.state = State::ServiceCall(self.service.call(req));
continue;
}
Ok(Async::NotReady) => None,
Err(e) => {
let res: Response = e.into().into();
let (res, body) = res.replace_body(());
Some(self.send_response(res, body.into_body())?)
}
},
State::ServiceCall(ref mut fut) => match fut.poll() {
Ok(Async::Ready(res)) => {
let (res, body) = res.into().replace_body(());
self.state = self.send_response(res, body)?;
continue;
}
Ok(Async::NotReady) => None,
Err(e) => {
let res: Response = e.into().into();
let (res, body) = res.replace_body(());
Some(self.send_response(res, body.into_body())?)
}
},
State::SendPayload(ref mut stream) => {
loop {
if self.write_buf.len() < HW_BUFFER_SIZE {
match stream
.poll_next()
.map_err(|_| DispatchError::Unknown)?
{
Async::Ready(Some(item)) => {
self.codec.encode(
Message::Chunk(Some(item)),
&mut self.write_buf,
)?;
continue;
}
Async::Ready(None) => {
self.codec.encode(
Message::Chunk(None),
&mut self.write_buf,
)?;
self.state = State::None;
}
Async::NotReady => return Ok(false),
}
} else {
return Ok(true);
}
break;
}
continue;
}
};
// set new state
if let Some(state) = state {
self.state = state;
if !self.state.is_empty() {
continue;
}
} else {
// if read-backpressure is enabled and we consumed some data.
// we may read more data and retry
if self.state.is_call() {
if self.poll_request()? {
continue;
}
} else if !self.messages.is_empty() {
continue;
}
}
break;
}
Ok(false)
}
fn handle_request(&mut self, req: Request) -> Result<State<S, B, X>, DispatchError> {
// Handle `EXPECT: 100-Continue` header
let req = if req.head().expect() {
let mut task = self.expect.call(req);
match task.poll() {
Ok(Async::Ready(req)) => {
self.send_continue();
req
}
Ok(Async::NotReady) => return Ok(State::ExpectCall(task)),
Err(e) => {
let e = e.into();
let res: Response = e.into();
let (res, body) = res.replace_body(());
return self.send_response(res, body.into_body());
}
}
} else {
req
};
// Call service
let mut task = self.service.call(req);
match task.poll() {
Ok(Async::Ready(res)) => {
let (res, body) = res.into().replace_body(());
self.send_response(res, body)
}
Ok(Async::NotReady) => Ok(State::ServiceCall(task)),
Err(e) => {
let res: Response = e.into().into();
let (res, body) = res.replace_body(());
self.send_response(res, body.into_body())
}
}
}
/// Process one incoming requests
pub(self) fn poll_request(&mut self) -> Result<bool, DispatchError> {
// limit a mount of non processed requests
if self.messages.len() >= MAX_PIPELINED_MESSAGES || !self.can_read() {
return Ok(false);
}
let mut updated = false;
loop {
match self.codec.decode(&mut self.read_buf) {
Ok(Some(msg)) => {
updated = true;
self.flags.insert(Flags::STARTED);
match msg {
Message::Item(mut req) => {
match self.codec.message_type() {
MessageType::Payload | MessageType::Stream => {
let (ps, pl) = Payload::create(false);
let (req1, _) =
req.replace_payload(crate::Payload::H1(pl));
req = req1;
self.payload = Some(ps);
}
_ => (),
}
// handle request early
if self.state.is_empty() {
self.state = self.handle_request(req)?;
} else {
self.messages.push_back(DispatcherMessage::Item(req));
}
}
Message::Chunk(Some(chunk)) => {
if let Some(ref mut payload) = self.payload {
payload.feed_data(chunk);
} else {
error!(
"Internal server error: unexpected payload chunk"
);
self.flags.insert(Flags::READ_DISCONNECT);
self.messages.push_back(DispatcherMessage::Error(
Response::InternalServerError().finish().drop_body(),
));
self.error = Some(DispatchError::InternalError);
break;
}
}
Message::Chunk(None) => {
if let Some(mut payload) = self.payload.take() {
payload.feed_eof();
} else {
error!("Internal server error: unexpected eof");
self.flags.insert(Flags::READ_DISCONNECT);
self.messages.push_back(DispatcherMessage::Error(
Response::InternalServerError().finish().drop_body(),
));
self.error = Some(DispatchError::InternalError);
break;
}
}
}
}
Ok(None) => break,
Err(ParseError::Io(e)) => {
self.client_disconnected();
self.error = Some(DispatchError::Io(e));
break;
}
Err(e) => {
if let Some(mut payload) = self.payload.take() {
payload.set_error(PayloadError::EncodingCorrupted);
}
// Malformed requests should be responded with 400
self.messages.push_back(DispatcherMessage::Error(
Response::BadRequest().finish().drop_body(),
));
self.flags.insert(Flags::READ_DISCONNECT);
self.error = Some(e.into());
break;
}
}
}
if updated && self.ka_timer.is_some() {
if let Some(expire) = self.codec.config.keep_alive_expire() {
self.ka_expire = expire;
}
}
Ok(updated)
}
/// keep-alive timer
fn poll_keepalive(&mut self) -> Result<(), DispatchError> {
if self.ka_timer.is_none() {
// shutdown timeout
if self.flags.contains(Flags::SHUTDOWN) {
if let Some(interval) = self.codec.config.client_disconnect_timer() {
self.ka_timer = Some(Delay::new(interval));
} else {
self.flags.insert(Flags::READ_DISCONNECT);
return Ok(());
}
} else {
return Ok(());
}
}
match self.ka_timer.as_mut().unwrap().poll().map_err(|e| {
error!("Timer error {:?}", e);
DispatchError::Unknown
})? {
Async::Ready(_) => {
// if we get timeout during shutdown, drop connection
if self.flags.contains(Flags::SHUTDOWN) {
return Err(DispatchError::DisconnectTimeout);
} else if self.ka_timer.as_mut().unwrap().deadline() >= self.ka_expire {
// check for any outstanding tasks
if self.state.is_empty() && self.write_buf.is_empty() {
if self.flags.contains(Flags::STARTED) {
trace!("Keep-alive timeout, close connection");
self.flags.insert(Flags::SHUTDOWN);
// start shutdown timer
if let Some(deadline) =
self.codec.config.client_disconnect_timer()
{
if let Some(timer) = self.ka_timer.as_mut() {
timer.reset(deadline);
let _ = timer.poll();
}
} else {
// no shutdown timeout, drop socket
self.flags.insert(Flags::WRITE_DISCONNECT);
return Ok(());
}
} else {
// timeout on first request (slow request) return 408
if !self.flags.contains(Flags::STARTED) {
trace!("Slow request timeout");
let _ = self.send_response(
Response::RequestTimeout().finish().drop_body(),
ResponseBody::Other(Body::Empty),
);
} else {
trace!("Keep-alive connection timeout");
}
self.flags.insert(Flags::STARTED | Flags::SHUTDOWN);
self.state = State::None;
}
} else if let Some(deadline) = self.codec.config.keep_alive_expire()
{
if let Some(timer) = self.ka_timer.as_mut() {
timer.reset(deadline);
let _ = timer.poll();
}
}
} else if let Some(timer) = self.ka_timer.as_mut() {
timer.reset(self.ka_expire);
let _ = timer.poll();
}
}
Async::NotReady => (),
}
Ok(())
}
}
impl<T, S, B, X> Future for Dispatcher<T, S, B, X>
where
T: AsyncRead + AsyncWrite,
S: Service<Request = Request>,
S::Error: Into<Error>,
S::Response: Into<Response<B>>,
B: MessageBody,
X: Service<Request = Request, Response = Request>,
X::Error: Into<Error>,
{
type Item = ();
type Error = DispatchError;
#[inline]
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let inner = self.inner.as_mut().unwrap();
inner.poll_keepalive()?;
if inner.flags.contains(Flags::SHUTDOWN) {
if inner.flags.contains(Flags::WRITE_DISCONNECT) {
Ok(Async::Ready(()))
} else {
// flush buffer
inner.poll_flush()?;
if !inner.write_buf.is_empty() {
Ok(Async::NotReady)
} else {
match inner.io.shutdown()? {
Async::Ready(_) => Ok(Async::Ready(())),
Async::NotReady => Ok(Async::NotReady),
}
}
}
} else {
// read socket into a buf
if !inner.flags.contains(Flags::READ_DISCONNECT) {
if let Some(true) = read_available(&mut inner.io, &mut inner.read_buf)? {
inner.flags.insert(Flags::READ_DISCONNECT)
}
}
inner.poll_request()?;
loop {
if inner.write_buf.remaining_mut() < LW_BUFFER_SIZE {
inner.write_buf.reserve(HW_BUFFER_SIZE);
}
let need_write = inner.poll_response()?;
// we didnt get WouldBlock from write operation,
// so data get written to kernel completely (OSX)
// and we have to write again otherwise response can get stuck
if inner.poll_flush()? || !need_write {
break;
}
}
// client is gone
if inner.flags.contains(Flags::WRITE_DISCONNECT) {
return Ok(Async::Ready(()));
}
let is_empty = inner.state.is_empty();
// read half is closed and we do not processing any responses
if inner.flags.contains(Flags::READ_DISCONNECT) && is_empty {
inner.flags.insert(Flags::SHUTDOWN);
}
// keep-alive and stream errors
if is_empty && inner.write_buf.is_empty() {
if let Some(err) = inner.error.take() {
Err(err)
}
// disconnect if keep-alive is not enabled
else if inner.flags.contains(Flags::STARTED)
&& !inner.flags.intersects(Flags::KEEPALIVE)
{
inner.flags.insert(Flags::SHUTDOWN);
self.poll()
}
// disconnect if shutdown
else if inner.flags.contains(Flags::SHUTDOWN) {
self.poll()
} else {
Ok(Async::NotReady)
}
} else {
Ok(Async::NotReady)
}
}
}
}
fn read_available<T>(io: &mut T, buf: &mut BytesMut) -> Result<Option<bool>, io::Error>
where
T: io::Read,
{
let mut read_some = false;
loop {
if buf.remaining_mut() < LW_BUFFER_SIZE {
buf.reserve(HW_BUFFER_SIZE);
}
let read = unsafe { io.read(buf.bytes_mut()) };
match read {
Ok(n) => {
if n == 0 {
return Ok(Some(true));
} else {
read_some = true;
unsafe {
buf.advance_mut(n);
}
}
}
Err(e) => {
return if e.kind() == io::ErrorKind::WouldBlock {
if read_some {
Ok(Some(false))
} else {
Ok(None)
}
} else if e.kind() == io::ErrorKind::ConnectionReset && read_some {
Ok(Some(true))
} else {
Err(e)
};
}
}
}
}
#[cfg(test)]
mod tests {
use std::{cmp, io};
use actix_codec::{AsyncRead, AsyncWrite};
use actix_service::IntoService;
use bytes::{Buf, Bytes, BytesMut};
use futures::future::{lazy, ok};
use super::*;
use crate::error::Error;
use crate::h1::ExpectHandler;
struct Buffer {
buf: Bytes,
write_buf: BytesMut,
err: Option<io::Error>,
}
impl Buffer {
fn new(data: &'static str) -> Buffer {
Buffer {
buf: Bytes::from(data),
write_buf: BytesMut::new(),
err: None,
}
}
}
impl AsyncRead for Buffer {}
impl io::Read for Buffer {
fn read(&mut self, dst: &mut [u8]) -> Result<usize, io::Error> {
if self.buf.is_empty() {
if self.err.is_some() {
Err(self.err.take().unwrap())
} else {
Err(io::Error::new(io::ErrorKind::WouldBlock, ""))
}
} else {
let size = cmp::min(self.buf.len(), dst.len());
let b = self.buf.split_to(size);
dst[..size].copy_from_slice(&b);
Ok(size)
}
}
}
impl io::Write for Buffer {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.write_buf.extend(buf);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsyncWrite for Buffer {
fn shutdown(&mut self) -> Poll<(), io::Error> {
Ok(Async::Ready(()))
}
fn write_buf<B: Buf>(&mut self, _: &mut B) -> Poll<usize, io::Error> {
Ok(Async::NotReady)
}
}
#[test]
fn test_req_parse_err() {
let mut sys = actix_rt::System::new("test");
let _ = sys.block_on(lazy(|| {
let buf = Buffer::new("GET /test HTTP/1\r\n\r\n");
let mut h1 = Dispatcher::new(
buf,
ServiceConfig::default(),
CloneableService::new(
(|_| ok::<_, Error>(Response::Ok().finish())).into_service(),
),
CloneableService::new(ExpectHandler),
);
assert!(h1.poll().is_err());
assert!(h1
.inner
.as_ref()
.unwrap()
.flags
.contains(Flags::READ_DISCONNECT));
assert_eq!(
&h1.inner.as_ref().unwrap().io.write_buf[..26],
b"HTTP/1.1 400 Bad Request\r\n"
);
ok::<_, ()>(())
}));
}
}