1
0
mirror of https://github.com/fafhrd91/actix-web synced 2025-08-30 16:40:21 +02:00
Files
actix-web/actix-http/src/h1/payload.rs
Thales d3c46537b3 fix(http): Wake Payload when feeding error or EOF (#3749)
* fix(http): Add failing tests to demonstrate the payload problem

Signed-off-by: Thales Fragoso <thales.fragoso@axiros.com>

* fix(http): Wake Payload when feeding error or eof

Signed-off-by: Thales Fragoso <thales.fragoso@axiros.com>

---------

Signed-off-by: Thales Fragoso <thales.fragoso@axiros.com>
2025-08-29 02:47:03 +00:00

351 lines
9.0 KiB
Rust

//! Payload stream
use std::{
cell::RefCell,
collections::VecDeque,
pin::Pin,
rc::{Rc, Weak},
task::{Context, Poll, Waker},
};
use bytes::Bytes;
use futures_core::Stream;
use crate::error::PayloadError;
/// max buffer size 32k
pub(crate) const MAX_BUFFER_SIZE: usize = 32_768;
#[derive(Debug, PartialEq, Eq)]
pub enum PayloadStatus {
Read,
Pause,
Dropped,
}
/// Buffered stream of bytes chunks
///
/// Payload stores chunks in a vector. First chunk can be received with `poll_next`. Payload does
/// not notify current task when new data is available.
///
/// Payload can be used as `Response` body stream.
#[derive(Debug)]
pub struct Payload {
inner: Rc<RefCell<Inner>>,
}
impl Payload {
/// Creates a payload stream.
///
/// This method construct two objects responsible for bytes stream generation:
/// - `PayloadSender` - *Sender* side of the stream
/// - `Payload` - *Receiver* side of the stream
pub fn create(eof: bool) -> (PayloadSender, Payload) {
let shared = Rc::new(RefCell::new(Inner::new(eof)));
(
PayloadSender::new(Rc::downgrade(&shared)),
Payload { inner: shared },
)
}
/// Creates an empty payload.
pub(crate) fn empty() -> Payload {
Payload {
inner: Rc::new(RefCell::new(Inner::new(true))),
}
}
/// Length of the data in this payload
#[cfg(test)]
pub fn len(&self) -> usize {
self.inner.borrow().len()
}
/// Is payload empty
#[cfg(test)]
pub fn is_empty(&self) -> bool {
self.inner.borrow().len() == 0
}
/// Put unused data back to payload
#[inline]
pub fn unread_data(&mut self, data: Bytes) {
self.inner.borrow_mut().unread_data(data);
}
}
impl Stream for Payload {
type Item = Result<Bytes, PayloadError>;
fn poll_next(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<Bytes, PayloadError>>> {
Pin::new(&mut *self.inner.borrow_mut()).poll_next(cx)
}
}
/// Sender part of the payload stream
pub struct PayloadSender {
inner: Weak<RefCell<Inner>>,
}
impl PayloadSender {
fn new(inner: Weak<RefCell<Inner>>) -> Self {
Self { inner }
}
#[inline]
pub fn set_error(&mut self, err: PayloadError) {
if let Some(shared) = self.inner.upgrade() {
shared.borrow_mut().set_error(err)
}
}
#[inline]
pub fn feed_eof(&mut self) {
if let Some(shared) = self.inner.upgrade() {
shared.borrow_mut().feed_eof()
}
}
#[inline]
pub fn feed_data(&mut self, data: Bytes) {
if let Some(shared) = self.inner.upgrade() {
shared.borrow_mut().feed_data(data)
}
}
#[allow(clippy::needless_pass_by_ref_mut)]
#[inline]
pub fn need_read(&self, cx: &mut Context<'_>) -> PayloadStatus {
// we check need_read only if Payload (other side) is alive,
// otherwise always return true (consume payload)
if let Some(shared) = self.inner.upgrade() {
if shared.borrow().need_read {
PayloadStatus::Read
} else {
shared.borrow_mut().register_io(cx);
PayloadStatus::Pause
}
} else {
PayloadStatus::Dropped
}
}
}
#[derive(Debug)]
struct Inner {
len: usize,
eof: bool,
err: Option<PayloadError>,
need_read: bool,
items: VecDeque<Bytes>,
task: Option<Waker>,
io_task: Option<Waker>,
}
impl Inner {
fn new(eof: bool) -> Self {
Inner {
eof,
len: 0,
err: None,
items: VecDeque::new(),
need_read: true,
task: None,
io_task: None,
}
}
/// Wake up future waiting for payload data to be available.
fn wake(&mut self) {
if let Some(waker) = self.task.take() {
waker.wake();
}
}
/// Wake up future feeding data to Payload.
fn wake_io(&mut self) {
if let Some(waker) = self.io_task.take() {
waker.wake();
}
}
/// Register future waiting data from payload.
/// Waker would be used in `Inner::wake`
fn register(&mut self, cx: &Context<'_>) {
if self
.task
.as_ref()
.map_or(true, |w| !cx.waker().will_wake(w))
{
self.task = Some(cx.waker().clone());
}
}
// Register future feeding data to payload.
/// Waker would be used in `Inner::wake_io`
fn register_io(&mut self, cx: &Context<'_>) {
if self
.io_task
.as_ref()
.map_or(true, |w| !cx.waker().will_wake(w))
{
self.io_task = Some(cx.waker().clone());
}
}
#[inline]
fn set_error(&mut self, err: PayloadError) {
self.err = Some(err);
self.wake();
}
#[inline]
fn feed_eof(&mut self) {
self.eof = true;
self.wake();
}
#[inline]
fn feed_data(&mut self, data: Bytes) {
self.len += data.len();
self.items.push_back(data);
self.need_read = self.len < MAX_BUFFER_SIZE;
self.wake();
}
#[cfg(test)]
fn len(&self) -> usize {
self.len
}
fn poll_next(
mut self: Pin<&mut Self>,
cx: &Context<'_>,
) -> Poll<Option<Result<Bytes, PayloadError>>> {
if let Some(data) = self.items.pop_front() {
self.len -= data.len();
self.need_read = self.len < MAX_BUFFER_SIZE;
if self.need_read && !self.eof {
self.register(cx);
}
self.wake_io();
Poll::Ready(Some(Ok(data)))
} else if let Some(err) = self.err.take() {
Poll::Ready(Some(Err(err)))
} else if self.eof {
Poll::Ready(None)
} else {
self.need_read = true;
self.register(cx);
self.wake_io();
Poll::Pending
}
}
fn unread_data(&mut self, data: Bytes) {
self.len += data.len();
self.items.push_front(data);
}
}
#[cfg(test)]
mod tests {
use std::{task::Poll, time::Duration};
use actix_rt::time::timeout;
use actix_utils::future::poll_fn;
use futures_util::{FutureExt, StreamExt};
use static_assertions::{assert_impl_all, assert_not_impl_any};
use tokio::sync::oneshot;
use super::*;
assert_impl_all!(Payload: Unpin);
assert_not_impl_any!(Payload: Send, Sync);
assert_impl_all!(Inner: Unpin, Send, Sync);
const WAKE_TIMEOUT: Duration = Duration::from_secs(2);
fn prepare_waking_test(
mut payload: Payload,
expected: Option<Result<(), ()>>,
) -> (oneshot::Receiver<()>, actix_rt::task::JoinHandle<()>) {
let (tx, rx) = oneshot::channel();
let handle = actix_rt::spawn(async move {
// Make sure to poll once to set the waker
poll_fn(|cx| {
assert!(payload.poll_next_unpin(cx).is_pending());
Poll::Ready(())
})
.await;
tx.send(()).unwrap();
// actix-rt is single-threaded, so this won't race with `rx.await`
let mut pend_once = false;
poll_fn(|_| {
if pend_once {
Poll::Ready(())
} else {
// Return pending without storing wakers, we already did on the previous
// `poll_fn`, now this task will only continue if the `sender` wakes us
pend_once = true;
Poll::Pending
}
})
.await;
let got = payload.next().now_or_never().unwrap();
match expected {
Some(Ok(_)) => assert!(got.unwrap().is_ok()),
Some(Err(_)) => assert!(got.unwrap().is_err()),
None => assert!(got.is_none()),
}
});
(rx, handle)
}
#[actix_rt::test]
async fn wake_on_error() {
let (mut sender, payload) = Payload::create(false);
let (rx, handle) = prepare_waking_test(payload, Some(Err(())));
rx.await.unwrap();
sender.set_error(PayloadError::Incomplete(None));
timeout(WAKE_TIMEOUT, handle).await.unwrap().unwrap();
}
#[actix_rt::test]
async fn wake_on_eof() {
let (mut sender, payload) = Payload::create(false);
let (rx, handle) = prepare_waking_test(payload, None);
rx.await.unwrap();
sender.feed_eof();
timeout(WAKE_TIMEOUT, handle).await.unwrap().unwrap();
}
#[actix_rt::test]
async fn test_unread_data() {
let (_, mut payload) = Payload::create(false);
payload.unread_data(Bytes::from("data"));
assert!(!payload.is_empty());
assert_eq!(payload.len(), 4);
assert_eq!(
Bytes::from("data"),
poll_fn(|cx| Pin::new(&mut payload).poll_next(cx))
.await
.unwrap()
.unwrap()
);
}
}