
Overview Over Attack Vectors and
Countermeasures for Buffer Overflows

Valentin Brandl
Faculity of Computer Science and Mathematics

OTH Regensburg
Regensburg, Germany

valentin.brandl@st.oth-regensburg.de
MatrNr. 3220018

Abstract—TODO
Index Terms—Buffer Overflow, Software Security

I. MOTIVATION

When the first programming languages were designed,
memory had to be managed manually to make the best use
of slow hardware. This opened the door for many kinds of
programming errors. Memory can be deallocated more than
once (double-free), the programm could read or write out of
bounds of a buffer (information leaks, buffer overflows). Lan-
guages that are affected by this are e.g. C, C++ and Fortran.
These languages are still used in critical parts of the worlds
infrastructure, either because they allow to implement really
performant programms, because they power legacy systems or
for portability reasons. Scientists and software engineers have
proposed lots of solutions to this problem over the years and
this paper aims to compare and give an overview about those.

Reading out of bounds can result in an information leak and
is less critical than buffer overflows in most cases, but there
are exceptions, e.g. the Heartbleed bug in OpenSSL which
allowed dumping secret keys from memory. Out of bounds
writes are almost always critical and result in code execution
vulnerabilities or at least application crashes.

II. MAIN PART, TODO

A. Background

text

B. Concept and Methods

1) Runtime Bounds Checks:
2) Prevent Overriding Return Address:
3) Restricting Language Features to a Secure Subset:
4) Static Analysis:
5) Type System Solutions:
6) ASLR: ASLR aims to prevent exploitatoin of buffer

overflows by placing code at random locations in memory.
That way, it is not trivial to set the return address to point to the
payload in memory. This is effective against generic exploits
but can still be exploited in combination with information
leaks or other techniques like heap spraying. Also on 32 bit
systems, the address space is small enough to try a brute-force
attempt until the payload in memory is hit.

7) wˆx Memory: This mitigation makes memory either
writable or executable. That way, an attacker cannot place
arbitiary payloads in memory. There are still techniques to
exploit this by reusing existing executable code. The ret-to-libc
exploiting technique uses existing calls to the libc with attacker
controlled parameters, e.g. if the programm uses the ”system”
command, the attacker can plant ”/bin/sh” as parameter on the
stack, followed by the address of ”system” and get a shell on
the system. Return oriented programming (a superset of ret-
to-libc exploits) uses so called ROP gadgets, combinations of
memory modifying instructions followed by the ret instruction
to build instruction chains, that execute the desired shellcode.
This is done by placing the desired return addresses in the right
order on the stack and reuses the existing code to circumvent
the wˆx protection.

C. Discussion

1) Ineffective or Inefficient:
2) State of the Art: text

III. CONCLUSION AND OUTLOOK

text

IV. SOURCES

• RAD: A Compile-Time Solution to Buffer Overflow At-
tacks [1] (might not protect against e.g. vtable overrides,
PLT address changes, . . . )

• Dependent types for low-level programming [2]
• StackGuard: Automatic Adaptive Detection and Preven-

tion of Buffer-Overflow Attachs [3] (ineffective in com-
bination with information leaks)

• Type-Assisted Dynamic Buffer Overflow Detection [4]

REFERENCES

[1] T.-c. Chiueh and F.-H. Hsu, “RAD: A Compile-Time Solution to Buffer
Overflow Attacks,” in 21st International Conference on Distributed Com-
puting Systems, 2001.

[2] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “Dependent
types for low-level programming,” in Programming Languages and Sys-
tems, R. De Nicola, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 520–535.

[3] C. Cowan, C. Po, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Yhang, “StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks,” in 7th USENIX Security
Symposium, 1998.



[4] K.-s. Lhee and S. J. Chapin, “Type-Assisted Dynamic Buffer Overflow
Detection,” in 11th USENIX Security Symposium, 2002.


	Motivation
	Main Part, TODO
	Background
	Concept and Methods
	Runtime Bounds Checks
	Prevent Overriding Return Address
	Restricting Language Features to a Secure Subset
	Static Analysis
	Type System Solutions
	ASLR
	w^x Memory

	Discussion
	Ineffective or Inefficient
	State of the Art


	Conclusion and Outlook
	Sources
	References

