
Overview Over Attack Vectors 
and Countermeasures for Buffer 

Overflows

Valentin Brandl
Wissenschaftliches Seminar

Faculty of Computer Science and 
Mathematics

OTH Regensburg



Topics

Motivation
Technical Overview
Ways of Exploiting Buffer Overflows
Analyzed Countermeasures
Discussion

 2



Motivation

14% of CVEs in 2018 were BOF
Concerns languages with manual memory 

management (C, C++, Fortran)
Second most used programming language: C (2019)

 3 https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html, 
https://www.tiobe.com/tiobe-index/ 

https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://www.tiobe.com/tiobe-index/


Technical Overview

 4



Technical Overview

Attacker overwrites any kind of function pointer 
(return address, VMT, …)

Attacker places payload in memory or reuses existing 
code

When function pointer is used, attacker gains code 
execution

DoS is also possible by accessing invalid memory

 5 https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html, 
https://www.tiobe.com/tiobe-index/ 

https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://www.tiobe.com/tiobe-index/


ASLR

 Randomize location of program in memory

 Attacker doesn‘t know where payload is located

 Prevents code execution

 Information leak allows exploitation

 Brute-force of 32 bit addresses possible

 Does not prevent DoS

 Compile-time mitigation, no code changes needed

 6



ASLR

 7



NX

 Memory can be either writable or executable

 Attacker cannot supply shellcode directly

 Code reuse still possible

 Compile-time mitigation, no code changes needed

 8



Stack Canary

 Markers at the end of a stack frame

 Invalid marker → Buffer overflow occurred

 No code changes required

 Only mitigates stack-based BOF

 Knowledge of canary allows bypassing

 9



RAD

 Read-only stack for return addresses

 Compared before return

 Compiler extension

 Only against stack-based BOF

 10



Bounds Checking

 Each indexing operation is checked

 100% effective (where applied)

 Non-trivial runtime overhead

 Used in languages with runtimes (Java, C#, Python, 
…)

 11



Dependent Types

 Value (size) is associated with a buffer

 Only allow indexing with validated values

 Language extension

 Lot of work to use, but type inference helps

 12



State of the Art

 Major OS implement ASLR

 Compilers implement PIE, NX, Stack Canaries 
(discussable defaults)

 13

Mitigation GCC? clang?

PIE No No

NX Yes Yes

Stack 
Canary

No No



State of the Art

 Most techniques only prevent exploitation (code 
execution)

 DoS might be just as critical (aviation, autonomous 
driving, ...)

 Only dependent typing and RBC actually prevent 
BOF

 14



Conclusion

 Use C, C++ and Fortran only if unavoidable and 
enable compiler mitigations

 Viable alternatives exist (Rust, Go, Java, ...)

 15



 Thank you for listening

 16


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

