

 2Ref.: [11], [12]

Overview Over Attack Vectors And
Countermeasures For Buffer Overflows

Christian Müller | Julian Dietrich | Valentin Brandl
Faculty of Computer Science and Mathematics

OTH Regensburg

Methods Of
Research

Attack
Vectors

Counter-
measures

Discussion

Agenda

 4

Methods Of Research

 5Methods of Research → Attack Vectors → Countermeasures → Discussion

Pape
r

Pape
r

Get
Overview
By Survey

Papers

Get
Overview
By Survey

Papers

Snowball-
System

Snowball-
System

Online-
Research
Online-

Research

Attack Vectors

 6

Stack-based buffer
overflows

Heap-based buffer
overflows

Integer overflows

Methods of Research → Attack Vectors → Countermeasures → Discussion

Stack-based buffer overflows

Attack Vectors

 7

Stack contains: Parameters, Local Variables, Return
Address, …

Return Address: Next address to execute when called
function returns

 Local Variables: Can contain function pointers

General Goal: Overwriting Return Address or Local
Function Pointers to gain Code Execution

Methods of Research → Attack Vectors → Countermeasures → Discussion

Stack-based buffer overflows

Attack Vectors

 8Methods of Research → Attack Vectors → Countermeasures → Discussion

Heap-based buffer overflows

Attack Vectors

 9

Heap contains: Class Instances, Function Pointers, Heap
Metadata, …

Heap Metadata: Used by Heap Management operations
such as freeing, merging, splitting chunks

 Type confusion: Modify internal Object Type stored by
dynamic typing languages such as Python or JavaScript

General Goal: Overwriting Function Pointers or Heap
Metadata to gain Code Execution

Methods of Research → Attack Vectors → Countermeasures → Discussion

Integer overflows

Attack Vectors

 10

Does not directly lead to Code Execution

Used to trigger Heap-based BOFs (buffer overflows)
 Overflow integer which determines allocation size
 Integer is smaller than needed size
 Out of bounds access

General Goal: Triggering a Heap-based BOF to gain
Code Execution

Methods of Research → Attack Vectors → Countermeasures → Discussion

ASLR

 Randomize location of program in memory

 Attacker doesn‘t know where payload is located

 Prevents code execution

 Information leak allows exploitation

 Brute-force of 32 bit addresses possible

 Does not prevent DoS

 Compile-time mitigation, no code changes needed

 11Methods of Research → Attack Vectors → Countermeasures → Discussion

ASLR

 12Methods of Research → Attack Vectors → Countermeasures → Discussion

NX

 Memory can be either writable or executable

 Attacker cannot supply shellcode directly

 Code reuse still possible

 Compile-time mitigation, no code changes needed

 13Methods of Research → Attack Vectors → Countermeasures → Discussion

Stack Canary

 Markers at the end of a stack frame

 Invalid marker → Buffer overflow occurred

 No code changes required

 Only mitigates stack-based BOF

 Knowledge of canary allows bypassing

 14Methods of Research → Attack Vectors → Countermeasures → Discussion

RAD

 Read-only stack for return addresses

 Compared before return

 Compiler extension

 Only against stack-based BOF

 15Methods of Research → Attack Vectors → Countermeasures → Discussion

Bounds Checking

 Each indexing operation is checked

 100% effective (where applied)

 Non-trivial runtime overhead

 Used in languages with runtimes
(Java, C#, Python, …)

 16Methods of Research → Attack Vectors → Countermeasures → Discussion

Dependent Types

 Value (size) is associated with a buffer

 Only allow indexing with validated values

 Language extension

 Lot of work to use, but type inference helps

 17Methods of Research → Attack Vectors → Countermeasures → Discussion

Discussion – Static Methods

 18

Wrong
Positives

+
Know-
How

Costs

Access To
Source-
Code

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Static Methods

 19

Wrong
Positives

+
Know-
How

Costs

Access To
Source-
Code

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Static Methods

 20

Wrong
Positives

+
Know-
How

Costs

Access To
Source-
Code

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Static Methods

 21

Wrong
Positives

+
Know-
How

Costs

Access To
Source-
Code

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Static Methods

 22

Wrong
Positives

+
Know-
How

Costs

Access To
Source-
Code

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Dynamic Methods

 23

Implement
-ation

+
Wrong
Positives

Access To
Source
Code

Legacy
Code

Size Of
Memory

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Dynamic Methods

 24

Implement
-ation

+
Wrong
Positives

Access To
Source
Code

Legacy
Code

Size Of
Memory

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Dynamic Methods

 25

Implement
-ation

+
Wrong
Positives

Access To
Source
Code

Legacy
Code

Size Of
Memory

-

Methods of Research → Attack Vectors → Countermeasures → DiscussionRef.: [1], [8], [9],
lkajd[10], [11]

Discussion – Dynamic Methods

 26Ref.: [1], [8], [9],
lkajd[10], [11]

Implement
-ation

+
Wrong
Positives

Access To
Source
Code

Legacy
Code

Size Of
Memory

-

Methods of Research → Attack Vectors → Countermeasures → Discussion

Discussion - Conclusion

 27Ref.: [1], [8], [9], [10],
[11]

Until today, a lot of software is developed in
unprotected languages

Combination if techniques provides best results
Computational intelligence combined with static
methods

Forecast
More computational intelligence techniques
 Techniques to handle buffer overflow vulnerabilities

automatically

Methods of Research → Attack Vectors → Countermeasures → Discussion

[1]

M. L. Chaim, D. S. Santos, and D. S. Cruzes, “What do we know about
buffer overflow detection? a survey on techniques to detect a persistent
vulnerability,” International Journal of Systems and Software Security
and Protection (IJSSSP), 2018.

[2]
W. Wang, “Survey of attacks and defenses on stack-based buffer overflow
vulnerability,” Advances in Computer Science Research (ACSR),
2017.

[3]
Y. Younan, W. Joosen, and F. Piessen, “Runtime countermeasures for
code injection attacks against c and c++ programs,” ACM Computing
Surveys (CSUR), 2012.

[4]
D. Brumley, T.-c. Chiueh, R. Johnson, H. Lin, and D. Song, “Rich:
Automatically protecting against integer-based vulnerabilities (rich),”
RICH Journal Group (RICH), 2007.

[5]

W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in c/c++,” ACM Trans. Softw. Eng. Methodol. (TOSEM),
vol. 25, no. 1, pp. 2:1–2:29, Dec. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2743019

[6]
D. Binkley, “Source code analysis: A road map,” IEEE Computer Society
(IEEE CS), 2007.

References (1/2)

 28

[7] M. Harman, “Why source code analysis and manipulation will always
be important,” IEEE Computer Society (IEEE CS), 2010.

[8]

B. M. Padmanabhuni and H. B. K. Tan, “Buffer overflow vulnerability
prediction form x86 executables using static analysis and machine
learning,” in 2015 IEEE 39th Annual International Computers, Software
and Applications Conference (IEEE), 2015.

[9]
M. Dalton, H. Kannan, and C. Kozyrakis, “Real-world buffer overflow
protection for userspace and kernelspace,” in USENIX Security Symposium
(USENIX), 2008.

[10]
O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow
detector,” in The Network and Distributed System Security Symposium
(NDSS), 2004.

[11]

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks,” in USENIX Security Symposium,
1998.

[12] https://computersciencementor.com/difference-between-virus-and-worm/,
entnommen: 14.12.19.

References (2/2)

 29

	Slide 1
	Slide 2
	Slide 3
	Agenda
	Methods Of Research
	Attack Vectors
	Attack Vectors
	Attack Vectors
	Attack Vectors
	Attack Vectors
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Discussion – Static Methods
	Discussion – Static Methods
	Discussion – Static Methods
	Discussion – Static Methods
	Discussion – Static Methods
	Discussion – Dynamic Methods
	Discussion – Dynamic Methods
	Discussion – Dynamic Methods
	Discussion – Dynamic Methods
	Discussion - Conclusion
	References (1/2)
	References (2/2)

