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Stack contains: Parameters, Local Variables, Return 
Address, …

Return Address: Next address to execute when called 
function returns

 Local Variables: Can contain function pointers

General Goal: Overwriting Return Address or Local 
Function Pointers to gain Code Execution
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Heap contains: Class Instances, Function Pointers, Heap 
Metadata, …

Heap Metadata: Used by Heap Management operations 
such as freeing, merging, splitting chunks

 Type confusion: Modify internal Object Type stored by 
dynamic typing languages such as Python or JavaScript

General Goal: Overwriting Function Pointers or Heap 
Metadata to gain Code Execution
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Does not directly lead to Code Execution

Used to trigger Heap-based BOFs (buffer overflows)
 Overflow integer which determines allocation size
 Integer is smaller than needed size
 Out of bounds access

General Goal: Triggering a Heap-based BOF to gain 
Code Execution
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ASLR

 Randomize location of program in memory

 Attacker doesn‘t know where payload is located

 Prevents code execution

 Information leak allows exploitation

 Brute-force of 32 bit addresses possible

 Does not prevent DoS

 Compile-time mitigation, no code changes needed
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NX

 Memory can be either writable or executable

 Attacker cannot supply shellcode directly

 Code reuse still possible

 Compile-time mitigation, no code changes needed
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Stack Canary

 Markers at the end of a stack frame

 Invalid marker → Buffer overflow occurred

 No code changes required

 Only mitigates stack-based BOF

 Knowledge of canary allows bypassing
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RAD

 Read-only stack for return addresses

 Compared before return

 Compiler extension

 Only against stack-based BOF
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Bounds Checking

 Each indexing operation is checked

 100% effective (where applied)

 Non-trivial runtime overhead

 Used in languages with runtimes                         
(Java, C#, Python, …)
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Dependent Types

 Value (size) is associated with a buffer

 Only allow indexing with validated values

 Language extension

 Lot of work to use, but type inference helps
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Until today, a lot of software is developed in 
unprotected languages

Combination if techniques provides best results
Computational intelligence combined with static 
methods

Forecast
More computational intelligence techniques
 Techniques to handle buffer overflow vulnerabilities 

automatically
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