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Abstract 
Buger overflow attack can inflict upon almost arbitrary 

programs and is one of the most common vulnerabilities 
that can seriously compromise the security of a network- 
attached computer system. This paper presents a 
compiler-based solution to the notorious buffer overflow 
attack problem. Using this solution, users can prevent 
attackers from compromising their systems by changing 
the return address to execute injected code, which is the 
most common method used in buffer overflow attacks. 
Return Address Defender (RAD) is a simple compiler 
patch that automatically creates a safe area to store a 
copy of return addresses and automatically adds 
protection code into applications that it compiles to 
defend programs against buffer overflow attacks. Using it 
to protect a program does not need to modifi the source 
code of the protected programs. Moreover, RAD does not 
change the layout of stack frames, so binary code it 
generated is compatible with existing libraries and other 
object files. Empirical pegormance measurements on a 
fully operational RAD prototype show that programs 
protected by RAD only experience a factor of between 
1.01 to 1.31 slow-down. In this paper we present the 
principle of bufSer overflow attacks, a taxonomy of 
defense methods, the implementation details of RAD, and 
the pedormance analysis of the RAD prototype. 

1: Introduction 

This paper presents a solution to the notorious buffer 
overflow attack problem. Using this solution, users can 
prevent attackers from compromising their systems by 
changing the return address to execute injected code, 
which is the most common method used in BO attacks. 
Anecdotal evidence shows that BO attacks have already 
been used to attack programs since the 1960s [18]. The 
most famous BO attack is the Internet Worm written by 
Robert T. Morris in 1988 [17]. Buffer overflow attacks 
can inflict upon almost any kind of programs and is one of 
the most common vulnerabilities that can seriously 
compromise the security of a network-attached computer 
system. Usually the result of such an attack is that the 
attacker gains the root privilege on the attacked host. 

Although the buffer overflow problem has been 
known for a long time, for the following reasons, i t  
continues to present a serious security threat. First, 
programmers do not have the discipline to check array 
bounds in their programs and most compilers do not do 
this also thus programs with this vulnerability are 
generated continuously. It is not easy to ask all 
programmers to check array bounds in their programs. For 
example, as of the writing of this paper, July 23rd 2000, 
the title of one of the latest vulnerabilities reported by 
CERT [5] is “ CA-2000-06 Multiple Buffer Overflows in 
Kerberos Authenticated Services.” Secondly, not all 
applications with this vulnerability have been found and 
for those that have been found, it  is not easy to replace all 
of them. For the above reasons, having a tool to seal this 
security breach automatically is very important. 

Return Address Defender (RAD) is a compiler 
extension that automatically inserts protection code into 
application programs that it compiled so that applications 
compiled by it will no longer be hijacked by return 
address attackers. 

Section 2 describes the principle of buffer overflow 
attacks and a taxonomy of defense methods. Section 3 
describes the design and implementation details of RAD. 
Section 4 presents the effectiveness of RAD and its 
performance overheads. Section 5 reviews related works 
in this field. Section 6 is the conclusion. 

2: Buffer Overflow Attacks 

2.1: Principle of Buffer Overflow Attacks 

If programs don’t check the size of the user input for a 
buffer array and the size of the input data is larger than the 
size of the buffer array, then areas adjacent to the array 
will be overwritten by the extra data. The lack of such 
“bound checks” creates the breeding ground for buffer 
overflow attacks [3,4, 20, 221. 

Program variables with similar persistence properties 
are assigned into the same memory area. Within each area, 
variables’, locations are adjacent to each other. Any 
writing past the bound of a data structure will overwrite 
adjacent data structures and change their values. If the 
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overwritten area contains a function’s return address, then 
when the function returns, this new value will be used as 
the address of the next instruction after the return. So if a 
hacker could inject hisher code into memory and change 
a return address to point to the injected code, then he/she 
can have the inserted code executed with the attacked 
program’s privilege. Attackers can execute injected code 
by applying the same method to function pointer variables 
[23] as well. 
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address 

bottom of stack 
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Stack 
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Figure 1: buffer overflow attack steps: 
(1) Feed the  buffer array with the  injected code through 
any I/O statement in the  attacked program. (2) Continue to 
feed the attacked program with injected string. (3) 
Overwrite the original return address with the new address 
pointing to the injected code. The regions marked with **’ 
are data structures on the stack that get overwritten by 
overflow attacks. 

C compilers allocate space for local variables and the 
return address of a function in the same stack frame. 
Within each frame these objects’ locations are adjacent to 
each other, as shown in Figure 1. Most C.compilers do not 
perform array bounds checking. As a result, C programs’ 
arrays become the favorite targets of buffer overflow 
attacks. In order to launch such an attack, all an attacker 
needs to do is to (a) compose a string containing his/her 
code and a return address pointing to the code, and (b) 
insert the string into the correct place in some stack frame 
of the attacked program through an U 0  statement. Then 
when the function whose local buffer array is overwritten 
returns, the injected code is executed. Because the 
inserted code is executed with the attacked program’s 
privilege, set-root UID programs and programs with root 
privilege, e.g. daemons, are attackers’ favorite targets. 

2.2: Defense Methods 

Injecting malicious code and addresses into a victim 
program (step A), changing its control flow at run time 
(step B), and executing the injected code (step C) are the 
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three essential steps to successfully launch a buffer 
overflow attack. A successful attack must have all of these 
3 steps. Several different solutions have been proposed or 
implemented to solve the buffer overflow problem 
through preventing one or more of these 3 steps. 
According to the strategy they use, we can classify these 
defense methods into the following three categories. 

The first type of defense methods defeats buffer 
overflow attacks by prohibiting the injection of malicious 
code. Richard Jones et al. [ 161 and OpenBSD [13] use this 
strategy to protect programs. In Jones’s approach, they 
developed an extension to GCC to automatically perform 
array bounds and pointer checking. In OpenBSD, they 
manually inspect and modify the kernel source code to 
perform array bounds and pointer checking. 

The second type of defense methods allows foreign 
code to be injected and even modifications to return 
addresses, but prohibits unauthorized changes of control 
flow. So attackers can inject their code into memory and 
can change return addresses, but control flow cannot be 
transferred to the injected code. RAD and OGI’s 
StackGuard [ 11 are both based on this strategy. RAD uses 
RAR and StackGuard uses canary words to prevent 
injected addresses from being used as return addresses of 
function calls. 

The third type of defense methods allows steps A and 
B to take place, but disables step C. So code and 
addresses can be injected into memory and control flow 
can be transferred to the injected code, but the injected 
code cannot be executed completely. Solar Designer’s 
non-executable stack [ 141 and Sekar’s [24] and Lee’s [25] 
intrusion detection methods use this strategy to protect 
network applications from buffer overflow attacks. In 
Solar Designer’s case, they make the stack non-executable; 
so even though control flow can be transferred to the 
injected code, the code cannot be executed. In Sekar’s 
method, they manually build normaVabnormal behavior 
patterns in terms of system call sequences and their 
arguments for each program to be protected. By 
comparing the run-time behavior of the protected program 
with its known legitimate patterns, they can detect and 
prevent the attacks. Lee’s method is based on a similar 
principle, but uses a data mining approach to build up the 
patterns dynamically. Both intrusion detection methods 
allow injected code to be executed, but attempt to detect 
abnormal behavior or known intrusion patterns to stop 
malicious code. 

3: Return Address Defender 

RAD is a patch to gcc-2.95.2 that automatically adds 
protection code into the function prologues and epilogues 
of the programs compiled by it. So the source code does 
not need to be modified. By overflowing a return address 



with a pointer to the injected code, attackers can have the 
code executed with the attacked program’s privilege. 
Return address defender (RAD) prevents this by making a 
copy of the function return address in a particular area of 
the data segment called Return Address Repository 
(RAR). By setting neighboring regions around RAR as 
read-only, we can defend RAR against any attempt to 
modify it through overflowing. Given that RAR’s integrity 
is guaranteed, each time when a return address of a stack 
frame is used to jump back to the caller function, this 
address is checked with the copy in RAR. A return 
address will be treated as un-tampered and thus safe to use 
only if RAR also contains the same address. 

There are two versions of RAD, MineZone RAD and 
Read-only RAD, which protect the return addresses 
stored in RAR in two different ways. Both methods are 
portable. MineZone RAD is more efficient while Read- 
Only RAD is more secure. 

3.1: MineZone RAD 

In MineZone RAD, we create a C file, 
/hacker/global.c, and modify gcc-2.95.2, so the file is 
automatically linked with programs compiled by RAD. 
This C file contains all the function definitions and 
variable declarations used in the new function prologues 
and epilogues. In g1obal.c we declare a global integer 
array and divide it  into 3 parts as shown in figure 2. 
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Figure 2 Structure of RAR and Mine Zones 

The middle part of the global integer array is RAR, 
which keeps a redundant copy of the return address of 

each function call. The first and third parts, call mine 
zones, are set as read-only areas by mprotecto system 
call so that any writing attempts to these areas will cause a 
trap. All protection functionalities are implemented as 
instructions added to the new function prologues and 
epilogues without changing the stack frame layout of each 
function. Therefore programs compiled by RAD are 
compatible with existing libraries and other object files. In 
the new function prologue, the first instruction executed is 
“pushing a copy of the current return address into RAR.” 
In the function epilogue, before returning to the caller, the 
callee compares the current return address with the top 
return address in RAR. If they are the same, RAD will pop 
it from RAR and go back to the caller. Otherwise this 
means someone is attacking the return address, and a real- 
time message and an email are sent to the system 
administrator and the attacked program is terminated. 
Figures 3 and 4 list the protection instructions’ pseudo 
code. 

Set areas around RAR as read-only 

program starts and is executed only once. * /  
If RAR is full 

/ *  This statement is executed when the 

{ Send warning message to user; 

1 
Terminate the program; 

Else 
Push current return address into FWR; 

Figure 3: Function Prologue Code 

MineZone RAD is a simple and efficient mechanism 
to protect return addresses, and it can survive attacks 
through buffer overflow to overwrite RAR or stack frame 
return addresses, which is the most common form of BO 
attacks. But if the attacked program satisfies several 
special conditions simultaneously, a Direct Return 
Address Modification Attack could still compromise the 
program even though it is protected by MineZone RAD. 
In the next subsection we present a variant of RAD that 
can resist DRAMA. 

If (top return address in RAR== return address 
in current stack frame) 
( Pop the top return address in RAR; 

Go back to caller; 
1 
Else 
{ Send a real-time message and an email to the 

system administrator; 
Terminate the program; 1 

Figure 4: Function Epilogue Code 

3.2: Read-only RAD 

If a program satisfies all the below statements and 
conditions simultaneously, attackers could launch a direct 
return address modification attack: 
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A statement of the form *A=B; where A is a 
pointer variable and B is a variable. 
A loop statement that copies user input into a 
buffer array without checking its bounds, and the 
array is adjacent to variable A. 
A loop statement that copies user input into a 
buffer array without checking its bounds, and the 
array is adjacent to variable B. 
Before *A=B is executed, statements in (2) and (3) 
must have been executed. After statements in 
condition (2) and (3) are executed, there are no 
other statements that change A’s and B’s values. 

Under the above conditions, attackers could launch an 
attack in the following way: Before *A=B is executed, use 
statements in conditions (2) and (3) in the attacked 
program to change A and B‘s values. Then after 
statement *A=B is executed, the address pointed to by the 
new value of A will get the new value of B. In fact, using 
this attack pattern, attackers can change the content of any 
memory location, including return addresses. However, so 
far we are not aware of any published exploit code that is 
based on this attack pattern. 

Read-only RAD is similar to Mine-Zone RAD. But 
instead of setting up mine zones, Read-only RAD sets the 
RAR itself as read-only to protect itself. As in MineZone 
RAD, instructions preventing buffer overflow attacks are 
added to the function prologues and epilogues. Figures 5 
and 6 list their pseudo code. In Read-only RAD, RAR is 
set as read-only most of the time. The only time that it  
becomes writable is in the function prologues when the 
current return address is pushed into RAR. Since there 
cannot be any external input statements in the function 
prologue instructions, so DRAMA doesn’t have any 
chance to change RAR. Of course, because RAR is set as 
read-only to update it in function prologues requires 
adding two extra system calls to each function call, 
causing a serious performance penalty. 

Set RAR as writable; 
If RAR is full 
{ Send warning message to user; 

Else 

Set RAR as read-only; 

Terminate the program; 1 

Push current return address into RAR; 

Figure 5 Function Prologue Code 

If (top return address in RAR== return address 
in current stack frame) ’ 

( Pop the top return address in RAFt; 
Go back to caller; 1 

Else 
( Send a real-time message and an email to the 

system administrator; 
Terminate the program; 1 

Figure 6 Function Epilogue Code 

3.3: Inconsistency of Address Storage 

So far RAD is based on the following assumptions: 

0 When a function is called, its stack frame is pushed 
into the stack and is not popped from the stack until it 
finishes and returns. 
When a function call returns, only its stack frame is 0 

Popped- 

These assumptions are not always true for C pro- 
grams. System calls setjmp() and longjmp() [7] allow 
users to bypass several functions in the call path to the 
current function to directly jump back to the function 
executing setjmp(). Users use setjmp() to set a return 
location and use longjmp() in a different function to go 
back to the return location set by the setjmp() statement. If 
between the executions of setimp() and longimp() there 
are several nested function calls, then when longjmp() is 
executed, the execution goes back to the setimp() 
statement directly. Consequently not only the current stack 
frame but also all stack frames between these two 
functions’ frames are popped from the stack. So the top 
return address of RAR and the return address in the 
current stack frame do not match in this case. According 
to 3.1 and 3.2, if the mismatch occurs, RAD will treat this 
as a potential attack and terminate the program. 

Because executing Ionimp() will pop more than one 
stack frame, we can address this problem by simulating 
the above action by popping the return ad-dresses in RAR 
accordingly. When detecting that the top return address of 
RAR is different from the return address in the current 
stack frame, instead of terminating the program, RAD 
pops RAR and repeats the comparison. If no match can be 
found when RAR is empty, then it means someone is 
launching an attack, otherwise the matched return address 
is safe to use. 

However, this scheme leads to another problem, as 
illustrated in Figures 7. For each stack frame, we only list 
its return address. a, b, c, d, e, f, and g are return addresses 
of functions A, B, C, D, E, F and G. In function A there is 
a setjmp() statement. In function F there is a longimp() 
statement. Figure 7-(1) shows a particular calling 
sequence, and its associated stack and RAR layouts. In 
this calling sequence, function G calls function D, which 
in turn calls function A. Function A executes setimp() and 
then calls function B which in turn calls function A. But 
this time function A does not execute setjmp() and then 
calls function E. Function E calls function F. In function F, 
the longjmp() statement is executed. After longjmp() is 
executed, the stack frames of F, E, A, and B are popped. 
The new stack layout is shown in Figure 7-(2). When 
function A returns, the stack layout is shown in Figure 7- 
(3). But using the new method, RAD only pops the return 
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addresses of F, E and A, as shown in Figure 7-(3). 
Obviously the two layouts are differently. Will this 
inconsistency cause any problem? The answer is No! For 
this calling sequence, when function D returns to function 
G, the stack layout becomes the one in Figure 7-(4). Then 
RAD pops return addresses b, a, and d. So now they 
become the same again. 

’li k t  

Figure 7 Layout inconsistency between RAR and 
stack due to the execution of longjmp() 

RAR only holds legal return addresses and RAD only 
uses RAR to check whether a return address is legal. RAD 
never changes or sets the return addresses used in 
programs. RAD either terminates the execution of a 
program or lets the program continue. So the layouts of 
return addresses in RAR and in the stack do not need to be 
the same all the time. Besides, RAD guarantees that no 
illegal entry is added into RAR,(RAD uses MineZone 
RAD and Read-only RAD to achieve this goal.), and 
when function call pushes a legal entry into RAR, the 
entry is still in RAR when the function whose prologue 
pushed the return address into RAR is about to return. So 
RAD works correctly. A formal proof of correctness of 
RAD is given in [26]. 

4: Evaluation of RAD 

4.1 : Implementation Issues 

The code implementing RAD consists of two parts, a 
patch to gcc and declarations in hacker/global.c. There 
are about 85 lines of C and GNU 80x86 in-lined assembly 
code in the patch part that inserts protection code into 
function prologues and epilogues and links global.c’s 
object file, global.0, with other object files to generate the 

final executable file. There are about 90 lines of C and 
GNU in-lined assembly code in globa1.c that contains 
variables’ and functions’ definitions used in the new 
function prologues and epilogues. 

The run time address space of a program compiled by 
RAD contains two copies of return addresses, one in the 
stack and one in RAR. Any attempt to change return 
addresses in the stack will be detected by RAD and result 
in the termination of the program and the delivery of a 
warning message to root. RAR is protected by system call 
mprotecto. mprotecto’s default reaction to memory 
access violation is a core dump. But this behavior could 
be changed. By making a patch to the kernel, RAD can 
react to memory access violation the same way as in the 
stack case. RAD uses a new system call to tell the kernel 
the exact portion of the address space that mprotect () uses 
to protect RAR. So when a memory access violation 
occurs, the kernel can use this information to determine 
whether it should make a core dump (due to a violation 
occurring in other mprotected-area) or terminate the 
program and send a read-time message to root (due to a 
violation occurring in the area used to protect RAR). In 
our case the patch to the kernel uses about 70 lines of C 
and GNU in-lined assembly code. 

When the patched kernel detects an attempt to modify 
RAR, it uses system call exec() to execute the program 
hackerhacker, which sends a real time message to the 
root and terminates the program. System call exec() 
requires that its parameters be stored in the user address 
space, but now execution is within the kernel. The patched 
kernel solves this problem by putting the parameters into 
the stack of the user address space before invoking exec(), 
so exec()’s parameters will be in the right place when it is 
executed and kernel can execute hackerhacker correctly. 

4.2: Effectiveness of RAD’S Defense 

Aleph One’s exploit code [3] is the template of many 
exploit codes used to launch a buffer overflow attack 
against a variety of applications. Many exploit codes only 
add small modifications to it. So our first step in testing 
the effectiveness of RAD is to test whether RAD can 
defend Aleph One’s code against the attack of his own 
exploit code. The test showed that RAD indeed stops the 
attack effectively. Originally, our next step is to find more 
exploit codes and then test them against their target 
victims with or without the protection of RAD. But for the 
following reasons, we chose a different way to evaluate 
the effectiveness of RAD. Currently those who attack 
return addresses only know that stack return addresses are 
their targets. They don’t know that RAD keeps another 
copy of each function return address in RAR. So even if 
we could show that RAD can successfully detect existing 
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buffer overflow attack codes, we still can not be sure that 
RAD can protect return addresses in all cases, because 
none of existing attacks know the existence of RAR, let 
alone attack it. Therefore, we chose to classify basic 
attack patterns, and evaluate RAD’s defense efficacy 
based on how well it can handle these basic attack patterns. 

Attack pattern 1 is the most common form of buffer 
overflow attacks. Aleph One’s code uses this pattern. A 
program containing a loop statement that reads input from 
outside without performing array bounds checking is a 
genetic victim. To launch a pattern 1 attack to change a 
return address, attackers must start from a nearby location 
of the address and repeat writing toward the return address. 
So when the return address is overwritten, the area 
between the start point and return address is also modified. 
In MineZone RAD, both sides of RAR have a read-only 
mine zone to protect it. Any one trying to use pattern I to 
change a return address in RAR will touch the mine zone 
first, which will result in the termination of the attacked 
program. So MineZone RAD can handle pattern 1 attacks 
successfully. 

If a program satisfies all the conditions listed in 3.2, 
which correspond to attack pattern 2, then even with 
MineZone RAD, attackers can still successfully hijack the 
program under attack, MineZone RAD can only prevent 
overflowed writing of RAR from the upper or lower 
directions, but cannot prevent direct random writes into 
RAR. In Read-only RAD, except in function prologues, 
RAR is read-only and in function prologues there is no 
any U 0  and loop copy statement, so attackers do not have 
any chance LO change RAR. So this RAD protects return 
addresses from both attack patterns 

4.3: Performance Evaluation 

This section describes tests that we use to evaluate the 
performance overhead of RAD. OGI’s work [ I ]  provides 
a good way to find the upper bound of a function’s 
additional performance cost of their scheme, so we adopt 
their methods to evaluate the performance overhead of 
RAD. 

4.3.1: Micro-Benchmark Results 

We wrote three C programs to evaluate three kinds of 
performance costs that RAD incurs. We use as the penalty 
metric the ratio of a function’s additional performance 
cost associated with RAD to the function’s original 
performance overhead. That is, Penalty = A ‘function’s 
additional performance cost associated with RAD + the 
function ’s original performance overhead . 

Each program has only two functions. Except the main 
function, there is another function that increases the value 

of a variable by one. We call the function 100,000,000 
times and use gettimeofday0 to measure the execution 
times required with or without the protection of RAD. All 
tests are made on a 133MHz Pentium processor with 32 
Mbytes of main memory. In program 1, we call a function, 
void inc(), 100,000,000 times to increment a global 
variable 100,000,000 times. The function has no 
arguments and no return value. In program 2, we call a 
function, void inc( int * ), 100,000,OOO times to increment 
a local variable of main() 100,000,000 times. The function 
has no return value, but has one argument that is the 
address of the local variable. In program 3, the function 
used is int inc( int ) which increments one to one of its 
local variables. We call the function 1oO,OOO,OOO times to 
measure RAD’s performance penalty. The function has a 
return value and an argument. Table 1 and Table 2 show 
the micro-benchmark results of MineZone RAD and 
Read-only RAD. All measured numbers are in terms of ps. 

Because the overhead of a function call is fixed and 
the overhead of the additional instructions added by RAD 
is also fixed, the more computation a function performs, 
the less RAD’s penalty is in term of relative percentages. 
In MineZone RAD, the additional over-head comes from 
the cost to store and manage return addresses in RAR. 
There are about 20 lines of assembly instructions in the 
function prologue and epilogue to perform the protection 
operation. In Read-only RAD, not only the above 
protection operation needs be performed, but also two 
mprotect() system calls must be executed to protect RAR, 
which introduces a serious performance penalty. This is 
the reason why the performance of Read-only RAD is 
much higher compared to MineZone RAR. 

4.3.2: Macro-Benchmark Results 

In subsection 4.3.1, we measure performance penal- 
ties on functions containing only one statement. They 
provide an upper bound on RAD’s relative performance 
penalty. The real performance penalty of executing a 
RAD-protected program should be the sum of the 
penalties of all functions in the program. In this subsection 
we measure the performance penalties of two significant 
Unix applications, ctags and gcc. ctags is a UNIX 
command that generates an index file for several 
languages, including C .  The version we used is ctags-3.2. 
Totally there are 9,488 lines of source code. The input 
program that gcc and RAD-protected gcc compile is a 
dictionary proxy server with 4500 lines of source code. 
For each program, we measured the execution times of the 
original program and the RAD-protected version. From 
these measurements, we calculated the performance 
penalty. 
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1 Function Prototype I Original run-time I MineZone RAD run-time 1 Penalty I 
Void inc() 

Void inc(int *) 
Int inc(int) 

12,814,378 30,897,126 1.41 
17,334,197 35,418,721 1.043 
18,089,58 1 36,924,768 1.04 1 

Table 1 Micro-benchmark results of MineZone RAD 

Void inc() 
IFunction Prototype loriginal run-time ]Read-only RAD run-time 1 Penalty I 

12,814,378 2,696,119,743 I 209.40 
Void inc(int * ) 17,334,197 2,628,705,475 1 150.65 
lint inc(int) 18,089,58 1 2,651,345,171 I 145.57 I 

Program size 
11991 lines 

Table 4 Macro-benchmark results of gcc 

Program tested User time System time Real time 
Original ctags 0.57 0.05 0.62 
MineZone RAD-protected ctags 0.58 0.05 0.63 
Read-only RAD-protected ctags 8.16 19.17 27.32 

The measurement results are shown in Tables 3 and 4, 
and are all in terms of seconds. As the additional cost of a 
RAD-protected program comes from the additional 
instructions added to function prologues and epilogues. So 
the more computation a program’s functions perform, the 
less performance penalty its RAD-enhanced version 
experiences. gcc’s functions have more computation than 
ctags’s so the penalty of Read-only RAD-protected gcc, 
18x, is smaller than the penalty of Read-only RAD- 
protected ctags, 43x. But the number of functions 
executed also influences the relative performance penalty. 
RAD introduces a fixed extra performance cost for each 
function protected by it, so the more functions executed, 
the more additional cost is added. gcc has more functions 
executed than ctags does, so the penalty of MineZone 
RAD-protected gcc,0.3x, is larger than the penalty of 
MineZone RAD-protected ctags, 0.02~. 

4500 lines loriginal gcc I 3.53 I 0.19 

5: Related Work 

3.72 

Crispin Cowan and Calton Pu et. al. [ I ]  has developed 
a gcc patch StackGuard that protects return addresses 
from being modified to point to the injected code without 
the need to modify the source code. There are 3 variants 

]Mine Zone RAD-protected gcc I 4.67 I 0.2 

of StackGuard, Canary version, MemGuard Register, and 
MemGuard VM. 

The Canary version of StackGuard puts a canary word 
before every return address in the stack. By checking the 
integrity of the canary before a function returns, this 
version can defeat most of pattern 1 attacks with little 
performance penalty. But if attackers can correctly guess 
the canary value, this method will not work. Besides under 
certain conditions attackers could overwrite the pre- 
computed canary values with their own values to turn off 
the protection [19]. In addition, due to alignment 
requirement, it is possible to overwrite a return address 
but skip over the canary word. The Canary version can’t 
survive pattern 2 attacks. Even though MineZone RAD 
also can’t survive these attacks either, it is more difficult 
to hijack the program protected by MineZone RAD, 
because attackers must change both the return addresses in 
stack and in RAR. The biggest drawback of the Canary 
version is that i t  changes the layout of stack frames, 
because an additional canary is inserted into every stack 
frame. This change will result in unexpected behavior in 
some programs. According to OGI [21], “the major 
compatibility limitation of StackGuard is that i t  changes 
the format of an activation record on the stack. Programs 
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that are introspective with respect to the format of data on 
the stack will fail.” 

Both MemGuard versions try to make the memory 
areas holding return addresses as read-only after they have 
been saved into those areas. MemGuard Register uses the 
4 Pentium debug registers to monitor any write action into 
the return addresses in the top-most 4 stack frames. 
MemGuard VM achieves this by setting the stack as read- 
only. By installing a trap handler, they catch writes to 
protected pages, and emulate the writes to non-protected 
words on protected pages. These two versions are more 
secure than the canary version. But not every processor 
architecture supports debug registers. As MemGuard 
Register has used all debug registers, so programs 
compiled by it have no free debug register to use. Finally 
if the total size of the top-most 4 stack frames is less than 
one page and there are other stack frames in the topmost 
page that MemGuard Register does not set as read-only to 
reduce the performance penalty, then return addresses in 
these stack frames are without protection and vulnerable 
to return address attacks. The MemGuard VM version 
exhibits a very serious performance penalty due to 
frequent memory references to a read-only area. 

Because system damage can only be inflicted via 
system calls, a running process’s system call patterns are 
good targets to monitor to detect intrusions. R. Sekar et al. 
[24] defined the behavior patterns of process in terms of 
sequences of system calls and their arguments. Before a 
program is executed, these patterns are manually written 
into a specification with a special language, called 
Regular Expression for Events (WE) .  So correctly using 
ERR to accurately describe the program behavior is 
essential for this method to work. Wenke Lee et al [25] 
used a data mining approach on audit data to identify 
legitimate pattern of resource usage. So before the 
patterns are established a large amount of data must be 
collected for the intrusion detection system to learn. 

Both strategies’ effectiveness relies on the existence of 
correct system call patterns. So whenever a program is to 
be executed, not only the executable file but also the 
corresponding system call pattern must be available. 
Moreover, any changes to the protected applications may 
entail a corresponding change on the associated patterns. 

Alexandre Snarskii has written a patch to libc to make 
FreeBSD un-exploitable with standard stack overflow 
attacks [ 151. Functions containing statements that get 
inputs for buffer arrays from outside without making 
bounds checking are vulnerable to buffer overflow attacks. 
If a library function has this vulnerability, all programs 
using this function are vulnerable to buffer overflow 
attacks also. Strcpy(), strcat(), and sprintf() are such 
library functions. Snarskii made a patch to these 
dangerous library functions to check the stack integrity 
before they return to solve this problem. Because the 
patch is only for C library functions, vulnerabilities in 

user-defined functions still exist and continue to threaten 
the security of computer systems. 

In an extension to the GNU C compiler, Richard Jones 
and Paul Kelly have developed a new method to enforce 
array bounds and pointers checking in the C language [ 161. 
They make the check without changing the representation 
of pointers, so code with array bound checking is 
compatible with the unchecked version. In their approach, 
every pointer value is valid for only one memory region 
that could be a single variable, an array, a single structure, 
an array of structure, or a single unit of memory allocated 
by malloc(). For every pointer expression, they define a 
unique base pointer. Then by checking whether the 
memory region referenced by the result of the pointer 
expression is the same region as the one referenced by the 
base pointer, they enforce bounds checking. This method 
solves the buffer overflow attack problem, including those 
attacks targeting at function pointers. But the performance 
penalties are substantial. For a matrix multiplication, there 
is a 30x slowdown. Moreover, in their implementation, 
under certain conditions array bounds checking is disabled. 

Injecting code into the stack and changing the return 
address to point to it is the most common form of BO 
attacks, so making the stack non-executable can 
effectively defeat the BO attack. Solar Designer [14], an 
alias, has written a patch for Linux kernel to make the 
stack non-executable. This patch has a very small 
performance cost. Besides, since it  doesn’t need to 
recompile the source code, users don’t need to find the 
source code to use this new kernel. But this method only 
works for traditional and standard stack attacks. Exploit 
code injected into data segment still can hijack the 
attacked program. 

Linux signal handler returns need an executable stack. 
Nested function calls and trampoline functions also need 
an executable stack to work properly. Functional 
languages, e.g. LISP, also need an executable stack. In 
order to solve the above problems, the patch needs to 
temporarily set the stack as executable when the above 
events occur. But this also creates a window of 
vulnerability for attackers to launch a buffer overflow 
attack. 

6: Conclusion 

This paper describes the design, implementation, and 
evaluation of a compiler solution called RAD to the 
buffer overflow attack problem. RAD is simple and 
effective, and does not suffer from the stack frame 
compatibility problem associated with previous 
approaches, In addition, RAD can correctly handle 
network application programs that use setjmp() and 
longimp() calls. We have also presented a taxonomy of 
memory overwrite attack patterns, and show that the less 
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secure version of RAD, MineZone RAD, can survive 
attack pattern 1 ,  while the more secure version, Read- 
Only RAD, can survive all attack patterns at the expense 
of much higher performance penalty. Binary code 
generated by RAD is compatible with existing libraries 
and other object files. When RAD is used to protect a 
program, there is no need to modify the source code. 
Finally RAD will send a real-time message and an email 
to the system administrator when it detects an attack. 
From the prototype implementation and performance 
measurements we believe RAD provides an effective way 
to protect computer systems against buffer overflow 
attacks. 
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