
The Heartbleed Bug
The Heartbleed Bug is a serious vulnerability in the popular OpenSSL

cryptographic software library. This weakness allows stealing the

information protected, under normal conditions, by the SSL/TLS encryption

used to secure the Internet. SSL/TLS provides communication security and

privacy over the Internet for applications such as web, email, instant

messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory of

the systems protected by the vulnerable versions of the OpenSSL software.

This compromises the secret keys used to identify the service providers and

to encrypt the traffic, the names and passwords of the users and the actual

content. This allows attackers to eavesdrop on communications, steal data

directly from the services and users and to impersonate services and users.

What leaks in practice?

We have tested some of our own services from

attacker's perspective. We attacked ourselves from

outside, without leaving a trace. Without using any

privileged information or credentials we were able steal

from ourselves the secret keys used for our X.509

certificates, user names and passwords, instant

messages, emails and business critical documents and

communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use

it can be abused. Fixed OpenSSL

(https://www.openssl.org/news/secadv/20140407.txt)

has been released and now it has to be deployed.

Operating system vendors and distribution, appliance

vendors, independent software vendors have to adopt

the fix and notify their users. Service providers and

users have to install the fix as it becomes available for

the operating systems, networked appliances and

software they use.

Q&A

What is the CVE-2014-0160?

CVE-2014-0160 is the official reference to this bug. CVE (Common Vulnerabilities and Exposures) is the Standard

for Information Security Vulnerability Names maintained by MITRE (http://cve.mitre.org/). Due to co-incident

discovery a duplicate CVE, CVE-2014-0346, which was assigned to us, should not be used, since others

independently went public with the CVE-2014-0160 identifier.

Why it is called the Heartbleed Bug?

Bug is in the OpenSSL's implementation of the TLS/DTLS (transport layer security protocols) heartbeat extension

(RFC6520). When it is exploited it leads to the leak of memory contents from the server to the client and from the

client to the server.

What makes the Heartbleed Bug unique?

Bugs in single software or library come and go and are fixed by new versions. However this bug has left large

amount of private keys and other secrets exposed to the Internet. Considering the long exposure, ease of

exploitation and attacks leaving no trace this exposure should be taken seriously.

Is this a design flaw in SSL/TLS protocol specification?

Heartbleed Bug http://heartbleed.com/

1 of 6 12/16/19, 12:59 PM



No. This is implementation problem, i.e. programming mistake in popular OpenSSL library that provides

cryptographic services such as SSL/TLS to the applications and services.

What is being leaked?

Encryption is used to protect secrets that may harm your privacy or security if they leak. In order to coordinate

recovery from this bug we have classified the compromised secrets to four categories: 1) primary key material, 2)

secondary key material and 3) protected content and 4) collateral.

What is leaked primary key material and how to recover?

These are the crown jewels, the encryption keys themselves. Leaked secret keys allow the attacker to decrypt any

past and future traffic to the protected services and to impersonate the service at will. Any protection given by the

encryption and the signatures in the X.509 certificates can be bypassed. Recovery from this leak requires patching

the vulnerability, revocation of the compromised keys and reissuing and redistributing new keys. Even doing all this

will still leave any traffic intercepted by the attacker in the past still vulnerable to decryption. All this has to be done

by the owners of the services.

What is leaked secondary key material and how to recover?

These are for example the user credentials (user names and passwords) used in the vulnerable services. Recovery

from this leak requires owners of the service first to restore trust to the service according to steps described above.

After this users can start changing their passwords and possible encryption keys according to the instructions from

the owners of the services that have been compromised. All session keys and session cookies should be invalidated

and considered compromised.

What is leaked protected content and how to recover?

This is the actual content handled by the vulnerable services. It may be personal or financial details, private

communication such as emails or instant messages, documents or anything seen worth protecting by encryption.

Only owners of the services will be able to estimate the likelihood what has been leaked and they should notify their

users accordingly. Most important thing is to restore trust to the primary and secondary key material as described

above. Only this enables safe use of the compromised services in the future.

What is leaked collateral and how to recover?

Leaked collateral are other details that have been exposed to the attacker in the leaked memory content. These may

contain technical details such as memory addresses and security measures such as canaries used to protect

against overflow attacks. These have only contemporary value and will lose their value to the attacker when

OpenSSL has been upgraded to a fixed version.

Recovery sounds laborious, is there a short cut?

After seeing what we saw by "attacking" ourselves, with ease, we decided to take this very seriously. We have gone

laboriously through patching our own critical services and are dealing with possible compromise of our primary and

secondary key material. All this just in case we were not first ones to discover this and this could have been

exploited in the wild already.

How revocation and reissuing of certificates works in practice?

If you are a service provider you have signed your certificates with a Certificate Authority (CA). You need to check

your CA how compromised keys can be revoked and new certificate reissued for the new keys. Some CAs do this for

free, some may take a fee.

Am I affected by the bug?

You are likely to be affected either directly or indirectly. OpenSSL is the most popular open source cryptographic

library and TLS (transport layer security) implementation used to encrypt traffic on the Internet. Your popular social

site, your company's site, commerce site, hobby site, site you install software from or even sites run by your

government might be using vulnerable OpenSSL. Many of online services use TLS to both to identify themselves to

you and to protect your privacy and transactions. You might have networked appliances with logins secured by this

Heartbleed Bug http://heartbleed.com/

2 of 6 12/16/19, 12:59 PM



buggy implementation of the TLS. Furthermore you might have client side software on your computer that could

expose the data from your computer if you connect to compromised services.

How widespread is this?

The most notable software using OpenSSL are the open source web servers like Apache and nginx. The combined

market share of just those two out of the active sites on the Internet was over 66% according to Netcraft's April 2014

Web Server Survey (https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html). Furthermore

OpenSSL is used to protect for example email servers (SMTP, POP and IMAP protocols), chat servers (XMPP

protocol), virtual private networks (SSL VPNs), network appliances and wide variety of client side software.

Fortunately many large consumer sites are saved by their conservative choice of SSL/TLS termination equipment

and software. Ironically smaller and more progressive services or those who have upgraded to latest and best

encryption will be affected most. Furthermore OpenSSL is very popular in client software and somewhat popular in

networked appliances which have most inertia in getting updates.

What versions of the OpenSSL are affected?

Status of different versions:

OpenSSL 1.0.1 through 1.0.1f (inclusive) are vulnerable

OpenSSL 1.0.1g is NOT vulnerable

OpenSSL 1.0.0 branch is NOT vulnerable

OpenSSL 0.9.8 branch is NOT vulnerable

Bug was introduced to OpenSSL in December 2011 and has been out in the wild since OpenSSL release 1.0.1 on

14th of March 2012. OpenSSL 1.0.1g released on 7th of April 2014 fixes the bug.

How common are the vulnerable OpenSSL versions?

The vulnerable versions have been out there for over two years now and they have been rapidly adopted by modern

operating systems. A major contributing factor has been that TLS versions 1.1 and 1.2 came available with the first

vulnerable OpenSSL version (1.0.1) and security community has been pushing the TLS 1.2 due to earlier attacks

against TLS (such as the BEAST (https://en.wikipedia.org/wiki/Transport_Layer_Security#BEAST_attack)).

How about operating systems?

Some operating system distributions that have shipped with potentially vulnerable OpenSSL version:

Debian Wheezy (stable), OpenSSL 1.0.1e-2+deb7u4

Ubuntu 12.04.4 LTS, OpenSSL 1.0.1-4ubuntu5.11

CentOS 6.5, OpenSSL 1.0.1e-15

Fedora 18, OpenSSL 1.0.1e-4

OpenBSD 5.3 (OpenSSL 1.0.1c 10 May 2012) and 5.4 (OpenSSL 1.0.1c 10 May 2012)

FreeBSD 10.0 - OpenSSL 1.0.1e 11 Feb 2013

NetBSD 5.0.2 (OpenSSL 1.0.1e)

OpenSUSE 12.2 (OpenSSL 1.0.1c)

Operating system distribution with versions that are not vulnerable:

Debian Squeeze (oldstable), OpenSSL 0.9.8o-4squeeze14

SUSE Linux Enterprise Server

FreeBSD 8.4 - OpenSSL 0.9.8y 5 Feb 2013

FreeBSD 9.2 - OpenSSL 0.9.8y 5 Feb 2013

FreeBSD 10.0p1 - OpenSSL 1.0.1g (At 8 Apr 18:27:46 2014 UTC)

FreeBSD Ports - OpenSSL 1.0.1g (At 7 Apr 21:46:40 2014 UTC)

How can OpenSSL be fixed?

Even though the actual code fix may appear trivial, OpenSSL team is the expert in fixing it properly so fixed version

1.0.1g or newer should be used. If this is not possible software developers can recompile OpenSSL with the

Heartbleed Bug http://heartbleed.com/

3 of 6 12/16/19, 12:59 PM



handshake removed from the code by compile time option -DOPENSSL_NO_HEARTBEATS .

Should heartbeat be removed to aid in detection of vulnerable services?

Recovery from this bug might have benefitted if the new version of the OpenSSL would both have fixed the bug and

disabled heartbeat temporarily until some future version. Majority, if not almost all, of TLS implementations that

responded to the heartbeat request at the time of discovery were vulnerable versions of OpenSSL. If only vulnerable

versions of OpenSSL would have continued to respond to the heartbeat for next few months then large scale

coordinated response to reach owners of vulnerable services would become more feasible. However, swift response

by the Internet community in developing online and standalone detection tools quickly surpassed the need for

removing heartbeat altogether.

Can I detect if someone has exploited this against me?

Exploitation of this bug does not leave any trace of anything abnormal happening to the logs.

Can IDS/IPS detect or block this attack?

Although the heartbeat can appear in different phases of the connection setup, intrusion detection and prevention

systems (IDS/IPS) rules to detect heartbeat have been developed. Due to encryption differentiating between

legitimate use and attack cannot be based on the content of the request, but the attack may be detected by

comparing the size of the request against the size of the reply. This implies that IDS/IPS can be programmed to

detect the attack but not to block it unless heartbeat requests are blocked altogether.

Has this been abused in the wild?

We don't know. Security community should deploy TLS/DTLS honeypots that entrap attackers and to alert about

exploitation attempts.

Can attacker access only 64k of the memory?

There is no total of 64 kilobytes limitation to the attack, that limit applies only to a single heartbeat. Attacker can

either keep reconnecting or during an active TLS connection keep requesting arbitrary number of 64 kilobyte chunks

of memory content until enough secrets are revealed.

Is this a MITM bug like Apple's goto fail bug was?

No, this does not require a man in the middle attack (MITM). Attacker can directly contact the vulnerable service or

attack any user connecting to a malicious service. However in addition to direct threat the theft of the key material

allows man in the middle attackers to impersonate compromised services.

Does TLS client certificate authentication mitigate this?

No, heartbeat request can be sent and is replied to during the handshake phase of the protocol. This occurs prior to

client certificate authentication.

Does OpenSSL's FIPS mode mitigate this?

No, OpenSSL Federal Information Processing Standard (FIPS) mode has no effect on the vulnerable heartbeat

functionality.

Does Perfect Forward Secrecy (PFS) mitigate this?

Use of Perfect Forward Secrecy (PFS), which is unfortunately rare but powerful, should protect past communications

from retrospective decryption. Please see https://twitter.com/ivanristic/status/453280081897467905

(https://twitter.com/ivanristic/status/453280081897467905) how leaked tickets may affect this.

Can heartbeat extension be disabled during the TLS handshake?

No, vulnerable heartbeat extension code is activated regardless of the results of the handshake phase negotiations.

Only way to protect yourself is to upgrade to fixed version of OpenSSL or to recompile OpenSSL with the handshake

removed from the code.

Heartbleed Bug http://heartbleed.com/

4 of 6 12/16/19, 12:59 PM



Who found the Heartbleed Bug?

This bug was independently discovered by a team of security engineers (Riku, Antti and Matti) at Codenomicon

(https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html) and Neel Mehta of Google Security,

who first reported it to the OpenSSL team. Codenomicon team found heartbleed bug while improving the SafeGuard

feature in Codenomicon's Defensics security testing tools and reported this bug to the NCSC-FI for vulnerability

coordination and reporting to OpenSSL team.

What is the Defensics SafeGuard?

The SafeGuard feature of the Codenomicon's Defensics security testtools automatically tests the target system for

weaknesses that compromise the integrity, privacy or safety. The SafeGuard is systematic solution to expose failed

cryptographic certificate checks, privacy leaks or authentication bypass weaknesses that have exposed the Internet

users to man in the middle attacks and eavesdropping. In addition to the Heartbleed bug the new Defensics TLS

Safeguard feature can detect for instance the exploitable security flaw in widely used GnuTLS open source software

implementing SSL/TLS functionality and the "goto fail;" (https://gotofail.com/) bug in Apple's TLS/SSL

implementation that was patched in February 2014.

Who coordinates response to this vulnerability?

Immediately after our discovery of the bug on 3rd of April 2014, NCSC-FI (https://www.kyberturvallisuuskeskus.fi/en)

took up the task of verifying it, analyzing it further and reaching out to the authors of OpenSSL, software, operating

system and appliance vendors, which were potentially affected. However, this vulnerability had been found and

details released independently by others before this work was completed. Vendors should be notifying their users

and service providers. Internet service providers should be notifying their end users where and when potential action

is required.

Is there a bright side to all this?

For those service providers who are affected this is a good opportunity to upgrade security strength of the secret

keys used. A lot of software gets updates which otherwise would have not been urgent. Although this is painful for

the security community, we can rest assured that infrastructure of the cyber criminals and their secrets have been

exposed as well.

What can be done to prevent this from happening in future?

The security community, we included, must learn to find these inevitable human mistakes sooner. Please support the

development effort of software you trust your privacy to. Donate money to the OpenSSL project.

(https://www.openssl.org/support/donations.html)

Where to find more information?

This Q&A was published as a follow-up to the OpenSSL advisory, since this vulnerability became public on 7th of

April 2014. The OpenSSL project has made a statement at https://www.openssl.org/news/secadv_20140407.txt

(https://www.openssl.org/news/secadv/20140407.txt). Individual vendors of operating system distributions, affected

owners of Internet services, software packages and appliance vendors may issue their own advisories.

References

CVE-2014-0160

NCSC-FI case# 788210

OpenSSL Security Advisory (https://www.openssl.org/news/secadv/20140407.txt) (published 7th of April 2014,

~17:30 UTC)

CloudFlare: Staying ahead of OpenSSL vulnerabilities (https://blog.cloudflare.com/staying-ahead-of-openssl-

vulnerabilities) (published 7th of April 2014, ~18:00 UTC)

heartbleed.com (http://heartbleed.com/) (published 7th of April 2014, ~19:00 UTC)

Ubuntu / Security Notice USN-2165-1 (https://www.ubuntu.com/usn/usn-2165-1/)

FreeBSD / SA-14:06.openssl (https://www.freebsd.org/security/advisories/FreeBSD-SA-14:06.openssl.asc)

FreshPorts / openssl 1.0.1_10 (https://www.freshports.org/security/openssl/)

Heartbleed Bug http://heartbleed.com/

5 of 6 12/16/19, 12:59 PM



(https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html)

© 2019 Synopsys, Inc. All Rights Reserved

RedHat / RHSA-2014:0376-1 (https://access.redhat.com/errata/RHSA-2014:0376)

CentOS / CESA-2014:0376 (https://lists.centos.org/pipermail/centos-announce/2014-April/020249.html)

Fedora / Status on CVE-2014-0160 (https://lists.fedoraproject.org/pipermail/announce/2014-

April/003205.html)

CERT/CC (USA) (https://www.kb.cert.org/vuls/id/720951/)

CERT.at (Austria) (https://www.cert.at/warnings/all/20140408.html)

CIRCL (Luxembourg) (http://www.circl.lu/pub/tr-21/)

CERT-FR (France) (https://www.cert.ssi.gouv.fr/)

JPCERT/CC (Japan) (https://www.jpcert.or.jp/english/at/2014/at140013.html)

CERT-SE (Sweden) (https://www.cert.se/2014/04/ny-sarbarhet-i-openssl-1-0-1)

CNCERT/CC (People's Republic of China) (https://www.cert.org.cn/publish/main/9

/2014/20140410091311360563426/20140410091311360563426_.html)

Public Safety Canada (https://www.publicsafety.gc.ca/cnt/rsrcs/cybr-ctr/2014/av14-017-en.aspx)

LITNET CERT (Lithuania) (https://cert.litnet.lt/2015/05/heartbleed-openssl-pazeidziamumas-3/)

UNAM-CERT (Mexico) (https://www.cert.org.mx/historico_cert/boletin/index.html@vulne=6487)

SingCERT (Singapore) (https://www.csa.gov.sg/singcert/news/advisories-alerts/updates-for-openssl-

heartbleed-vulnerabilty-for-end-users)

Q-CERT (Qatar) (http://www.qcert.org/sites/default/files/public/alert_details_9042014_heartbleed.pdf)

Heartbleed logo is free to use, rights waived via CC0 (https://creativecommons.org/publicdomain/zero/1.0/). [download logo in SVG

format] (/heartbleed.svg)

Page updated 2014-04-29 07:05 UTC.

Heartbleed Bug http://heartbleed.com/

6 of 6 12/16/19, 12:59 PM


