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Abstract—This paper tries to explain the details behind buffer
overflows, explore the problems stemming from those kinds of
software vulnerabilities and discus possible countermeasures with
focus on their effectiveness, performance impact and ease of use.
It discusses compiler based (such as ASLR, NX, stack canaries)
as well as type system based (e.g. dependent types) solutions to
this prevalent type of software bugs based on their performance
impact and the effort needed to introduce the mitigations into
existing software projects. An analysis of the current state of
the art informs the reader about what to expect when writing
software today. The analysis shows that most techniques actually
tackle the problem of exploiting buffer overflows for code
execution but do nothing to prevent introducing them in the
first place.

Index Terms—Buffer Overflow, Software Security

I. MOTIVATION

In the early days of programming, memory as managed
manually to make the best use of slow hardware and low
memory. This opened the door for many kinds of programming
errors. Memory can be deallocated more than once (double-
free), invalid pointers can be dereferenced (NULL pointer
dereference; this is still a problem in many modern languages)
or the program could read or write out of bounds of a buffer
(information leaks, buffer overflows (BOFs)). Languages that
are affected by this are e.g. C, C++ and Fortran. While
modern programming languages solve most if not all of
these problems, critical parts of the worlds infrastructure
are still implemented in these old languages, either because
they allow the implementation of really performant programs,
offer deterministic runtime behaviour (e.g. no pauses due to
garbage collection), because they power legacy systems or
for portability reasons. Scientists and software engineers have
proposed lots of solutions to this problem over the years and
this paper aims to compare and give an overview about those.

Reading out of bounds can result in an information leak and
is one of the less critical results of BOF in most cases, but there
are exceptions, e.g. the Heartbleed bug [1] in OpenSSL which
allowed dumping secret keys from memory. Out of bounds
writes are almost always critical and result in code execution
vulnerabilities or at least application crashes.

In 2018, 14% (2368 out of 16556) [2] of all software vul-
nerabilities that have a CVE assigned, were overflow related.

This shows that, even if this type of bug is very old and well
known, it’s still relevant today.

II. BACKGROUND

A. Technical Details

Code execution via BOF vulnerabilities almost always
works by overwriting the return address in the current stack
frame (known as “stack smashing”) [3], so when the RET
instruction is executed, an attacker controlled address is moved
into the instruction pointer (IP) register and the code pointed to
by this address is executed [4]. Other ways include overwriting
addresses in the procedure linkage table (PLT) (the PLT
contains addresses of dynamically linked library functions) of
a binary so that, if a linked function is called, an attacker
controlled function is called instead, or (in C++) overwriting
the virtual method table (VMT), which stores the pointers to
an object’s methods.

A simple vulnerable C program might look like this:

void vuln(char *input) {
char buf[50];
size_t len = strlen(input);
for (size_t i = 0; i < len; i++) {
buf[i] = input[i];

}
}
int main(int argc, char **argv) {
vuln(argv[1]);
return 0;

}

Fig. 1: Vulnerable C program

A successful stack BOF exploit would place the payload in
the memory by supplying it as an argument to the program
(or by placing it in an environment variable, writing it to
a file that the program reads, via network packet, . . . ) and
eventually overwrite the return address by providing an input
with more than 50 bytes and therefore writing out of bounds.
When executing the return instruction, and the IP jumps
into the payload, the attacker’s code is executed. This works
due to the way, how CPUs perform function calls: The stack



frame of the current function lies between the base pointer
(BP) and stack pointer (SP) as shown in fig. 2a. When calling
a function, the value of the BP and IP is pushed to the stack
(fig. 2b) and the CPU writes the address of the called function
into the IP. When the function returns, after restoring the old
IP from the stack, the execution continues from where the
function call occurred earlier. If an overflow overwrites the old
IP (fig. 2c), the attacker controls where execution continues.

argc 0xFE ← SP (main)

argv 0xFF ← BP (main)

(a) Stack layout before function call

buf 0xC8 ← SP (vuln)

buf ...

buf 0xFA ← BP (vuln)

[old IP] 0xFB

[BP (main)] 0xFC

[*input] 0xFD

argc 0xFE

argv 0xFF

(b) Stack layout after function call

[payload] 0xC8 ← SP (vuln)

[payload] ...

[payload] 0xFA ← BP (vuln)

[controlled IP] 0xFB

[BP (main)] 0xFC

[*input] 0xFD

argc 0xFE

argv 0xFF

(c) Stack layout after overflow

Fig. 2: Stack layouts during an BOF exploit

This is only one of several types and exploitation tech-
niques. Others include

• Heap-based BOF: In this case there is no way of over-
writing the return address but objects on the heap might
contain function pointers (e.g. for dynamic dispatch)
which can be overwritten to execute the attackers code,
when called [4].

• Integer overflow: Some calculation on fixed sized integers
is used to allocate memory. The calculation leads to an
integer overflow and only a small buffer is allocated [4].
Later the buffer is indexed with a big integer and per-

forms a read or write outside the buffer. This kind of
vulnerability can also lead to other problems because at
least in C, signed integer overflow is undefined behaviour.

This paper does not explore other kinds of BOF in detail
because the concept is always the same: Unchecked indexing
into memory allows the attacker to overwrite some kind of
return or call address, which allows hijacking of the execution
flow.

The most trivial kind of payloads is known as a NOP
sled. Here the attacker appends as many NOP instructions
before any shell-code (e.g. to invoke /bin/sh) and points
the overwritten IP or function pointer somewhere inside the
NOPs. The execution “slides” (hence the name) through the
NOPs until it reaches the shell-code. Most of the mitigation
techniques described in this paper protect against this kind
of exploit but there are different and more complex ways of
exploiting BOFs that are not that easily mitigated.

III. CONCEPT AND METHODS

A. Research Methods

This paper describes several techniques that have been
proposed to mitigate the problems introduced by BOFs and
tries to answer the following questions:

• What is the performance impact?
• How effective is the technique? Did it actually prevent

exploitation of BOFs?
• How realistic is it for developers to use the technique in

real-world code? Is an incremental introduction possible?

The paper focuses on solutions for the C language, since it is
still the second most used language as of December 2019 [5].
Some of the described techniques are language agnostic but
this is not a focus of this paper. In the end, there is a discussion
about the current state.

For the literature research, the paper “What Do We Know
About Buffer Overflow Detection?: A Survey on Techniques
to Detect A Persistent Vulnerability” served as a base. From
there on, the author performed a snowball system search
with combinations of the keywords “buffer”, “overflow”, “de-
tection”, “prevention” and “dependent typing” using https:
//scholar.google.com/.

Evaluation and prioritization of results is done using the
following criteria:

• Type of publication in the following order:

1) conference paper
2) unreleased paper
3) books
4) online sources

• Number of citations
• Publisher
• Author’s reputation and institute
• Overall quality (first by checking structure and abstract,

then by the actual content)

https://scholar.google.com/
https://scholar.google.com/


B. Runtime bounds checking (RBC)

The easiest and maybe single most effective method to
prevent BOFs is to check, if a write or read operation is out
of bounds. This requires storing the size of a buffer together
with the pointer to the buffer (so called fat pointers) and check
for each read or write in the buffer, if it is in bounds at
runtime. Almost any language that comes with a managed
runtime, uses RBC. For this technique to be effective in
general, writes to raw pointers must be disallowed. Otherwise
the security checks can be circumvented. RBC introduces a
runtime overhead for every indexed read or write operation.
This is a problem if a program runs on limited hardware or
might impact real-time properties.

Introducing RBC into an existing codebase is not easy.
Using fat pointers in a few functions does not prevent other
parts of the code to use raw pointers into the same buffer.
So for this to be effective, the whole codebase needs to
be changed to disallow raw pointers, which, depending on
the size, might not be feasible. Still, if done correctly and
consequently, there will be no BOF vulnerabilities. Denial of
service (DOS) might is still possible depending on how invalid
indexing is handled, because the program might terminate
gracefully when a out of bounds index is used.

C. Prevent/Detect Overwriting Return Address

Since stack based BOF exploits work by overwriting the
return address in the current stack frame, preventing or at least
detecting this, can be quite effective without much overhead
at runtime. Chiueh, Tzi-cker and Hsu, Fu-Hau describe a
technique that stores a redundant copy of the return address in
a secure memory area that is guarded by read-only memory,
so it cannot be overwritten by overflows. When returning,
the copy of the return address is compared to the one in
the current stack frame and only if it matches, the RET
instruction is actually executed [6]. While this is effective
against stack based BOFs, in the described form, it does not
protect against VMT or PLT overwrites. An extension could be
made to also protect the PLT and VMT but custom constructs
using function pointers would remain vulnerable. Since this
technique is a compiler extension, no modification of the
codebase is required to enable it, and while it does not prevent
all kinds of BOF, it mitigates all stack based BOFs with only
minimal overhead when calling and returning from a function.

An older technique from 1998 proposes to put a canary word
(named after the canaries that were used in mines to detect
low oxygen levels) between the data of a stack frame and the
return address [7][8]. When returning, a check is performed,
to confirm, the canary is intact, if it is not, a BOF occurred.
This technique is implemented by major compilers [9] but
can be defeated, if there is an information leak that leaks the
canary to the attacker. The attacker is then able to construct
a payload, that keeps the canary intact. This mitigation has a
minimal performance impact [9] and offers a good level of
protection. It is a compiler extension so there is no need for
modification of the code base.

D. Type System Solutions

Condit, Jeremy and Harren, Matthew and Anderson,
Zachary and Gay, David and Necula, George C. propose an
extension to the C type system that extends it with dependent
types. These types have an associated value, e.g. a pointer
type can have the buffer size associated to it [10]. This
prevents indexing into a buffer with out-of-bounds values. This
extension is a superset of C so compilation of any valid C code
is possible using the extension and incremental improvement
of the codebase is possible. If the type extension is advanced
enough, the additional information might form the base for
a formal verification. In some cases, inference of the type
extensions is possible [10].

This technique prevents all kinds of overflows, if used, but
requires changes to the codebase and is only effective where
these changes are applied. Since it is a compile-time solution,
it affects the compile-time but has no negative effect on the
runtime.

E. Address Space Layout Randomization

Address space layout randomization (ASLR) aims to pre-
vent exploitation of BOFs by placing code at random locations
in memory [8]. That way, it is not trivial to set the return
address to point to the payload in memory. This is effective
against every kind of BOF vulnerability but it is still possible
to exploit BOF vulnerabilities in combination with information
leaks or other techniques like heap spraying. Also on 32 bit
systems, the address space is small enough to try a brute-force
attempt until the payload in memory is hit [11].

This is another technique that works without modification
of the code base. Also there is no runtime overhead because
nothing changed except the location of the program.

F. wˆx Memory

wˆx (also known as non-eXecutable (NX) or data exe-
cution prevention (DEP)) makes memory either writable or
executable [8]. That way, an attacker cannot place arbitrary
payloads in memory. There are still techniques to exploit this
by reusing existing executable code. The ret-to-libc exploiting
technique uses existing calls to the libc with attacker controlled
parameters, e.g. if the program uses the system command,
the attacker can plant /bin/sh as parameter on the stack,
followed by the address of system and get a shell on the
system. Return oriented programming (ROP) (a superset of ret-
to-libc exploits) uses so called ROP gadgets, combinations of
memory modifying instructions followed by the RET instruc-
tion to build instruction chains, that execute the desired shell-
code. This is achieved by placing the desired return addresses
in the right order on the stack and reuses the existing code to
circumvent the wˆx protection. These combinations of memory
modification followed by RET instructions, known as ROP
chains, are Turing complete [12], so in theory it is possible
to construct any imaginable payload, as long as the exploited
program contains enough gadgets and the overflowing buffer
has enough space.



IV. DISCUSSION

A. Effectiveness
1) ASLR: ASLR has proven effective and sees wide use

in production. Most major operating systems implement this
technique [13]. Some even use kernel ASLR [14]. Since this
mechanism is active at runtime, it does not require any changes
in the code itself, the program only has to be compiled as a
position-independent executable (PIE). On 32-bit CPUs, only
16-bit of the address are randomized. These 16-bit can be brute
forced in a few minutes or seconds [15].

There is no runtime overhead since the only change is
the position of the program in memory. This technique can
and should be used on modern systems because there is no
additional work required, except maybe recompilation.

2) wˆx: The rise of code reuse exploits like ROP and ret-
to-libc, shows the ineffectiveness of wˆx protection. It makes
vulnerabilities harder to exploit by preventing the most naive
types of payloads but it doesn’t actually prevent exploits from
happening.

NX does not prevent any exploits but makes it harder for an
attacker that does not know the system, the program is running
on (e.g. a network service). It has no runtime overhead and is
a compile-time option so it does not hurt to enable NX.

3) Runtime Bounds Checks: Checking for overflows at
runtime is very effective but can have a huge performance
impact so it is not feasible in every case. It also comes
with other footguns. There might be integer overflows when
calculating the bounds which might introduce other problems.

B. State of the Art
Operating systems started to compile C code to PIEs by

default [16] and ASLR is enabled, too. Same goes for NX
and stack canaries [16]. The combination of these mitigations
makes it hard to write general exploits for modern operating
systems.

To check the current state, the author investigates, which
mitigations are enabled by default in the latest release (9.2)
of the GNU compiler collection (GCC) and the latest com-
mit of the LLVM-project (181ab91efc9) by building both
compilers using the default configuration. The experiments are
performed on a 64-bit Debian 9.11 system running on version
4.19.0 of the Linux kernel. The following commands compile
the source codes:

The build, host and target parameters in fig. 3a
describe the target platform for the compiler and
disable-multilib disables 32-bit support, which
is not needed for this experiment. The -j8 flag only
tells make to use all 8 available cores for compilation.
CMAKE_BUILD_TYPE=Release creates a release build of
the clang compiler (see fig. 3b).

The fresh builds of GCC and clang compile the code
from fig. 1 to check which mitigations are enabled by default.
After using gcc -o vuln.gcc vuln.c and clang -o
vuln.clang vuln.c to compile the source code, the
checksec.sh tool [17] shows which mitigations are active
in the new binary:

mkdir objdir \
&& cd objdir \
&& ../configure \
--build=x86_64-linux-gnu \
--host=x86_64-linux-gnu \
--target=x86_64-linux-gnu \
--disable-multilib \

&& make -j8

(a) GCC compilation script
mkdir build \
&& cd build \
&& cmake -DLLVM_ENABLE_PROJECTS=clang \

-DCMAKE_BUILD_TYPE=Release \
-G "Unix Makefiles" ../llvm \

&& make -j8

(b) clang compilation script

Mitigation Active in GCC? Active in clang?

Stack Canary No No

NX Yes Yes

PIE No No

TABLE I: Enabled mitigations in a default GCC and clang
build

Surprisingly enough, two of the most popular C compilers
enable only one of the described compile-time mitigations by
default (see table I). Maintainer of operating system packages
of the compiler might choose a more secure configuration for
the compiler as shown in [16] but still, compiler vendors might
want to choose better defaults, too.

So far, all discussed mitigations don’t change anything about
the existence of BOFs but just try to prevent the exploitation
for code execution. The vulnerable programs terminate if the
stack canary is overwritten, a call into NX memory occurs
or execution continues inside garbage data due to ASLR.
The underlying problem persists, only the worst results are
mitigated. DOS is still a problem in safety critical systems
(e.g. cars, planes, medical devices) or in any area with real-
time requirements.

Language extensions to fix the problem of BOFs as de-
scribed in [10] require lots of discipline to use them every-
where. They are only useful if the whole codebase uses the
new features. Introducing them in an existing codebase is quite
unrealistic since it requires lots of modifications. On the other
hand, this actually prevents BOFs from happening and not just
from being exploited, so it looks like an interesting concept
for safety critical software.

V. CONCLUSION

While there are many techniques, that protect against differ-
ent types of BOFs, none of them is effective in every situation
but in combination they offer good protection against code
execution attacks. Maybe the time has come, where usage of



memory unsafe languages has to be stopped where it is not
inevitable. There are many modern programming languages,
that aim for the same problem space as C, C++ or Fortran
but without the issues coming from these languages. If it is
feasible to use a garbage collector, languages like Go, Java or
even scripting languages like Python might work just fine. If
real-time properties are required, Rust could be the way to go,
without any language runtime and with deterministic memory
management. For any other problem, almost any other memory
safe language is better than using unsafe C.
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