
Overview Over Attack Vectors 
and Countermeasures for Buffer 

Overflows

Valentin Brandl
Wissenschaftliches Seminar

Faculty of Computer Science and 
Mathematics

OTH Regensburg



Topics

Motivation
Technical Overview
Ways of Exploiting Buffer Overflows
Analyzed Countermeasures
Discussion

 2



Motivation

14% of CVEs in 2018 were BOF
Concerns languages with manual memory 

management (C, C++, Fortran)
Second most used programming language: C (2019)

 3 https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html, 
https://www.tiobe.com/tiobe-index/ 

https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://www.tiobe.com/tiobe-index/


Technical Overview

 4



Technical Overview

Attacker overwrites any kind of function pointer 
(return address, VMT, …)

Attacker places payload in memory or reuses existing 
code

When function pointer is used, attacker gains code 
execution

DoS is also possible by accessing invalid memory

 5 https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html, 
https://www.tiobe.com/tiobe-index/ 

https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://www.tiobe.com/tiobe-index/


ASLR

 Randomize location of program in memory

 Attacker doesn‘t know where payload is located

 Prevents code execution

 Information leak allows exploitation

 Brute-force of 32 bit addresses possible

 Does not prevent DoS

 Compile-time mitigation, no code changes needed

 6



ASLR

 7



NX

 Memory can be either writable or executable

 Attacker cannot supply shellcode directly

 Code reuse still possible

 Compile-time mitigation, no code changes needed

 8



Stack Canary

 Markers at the end of a stack frame

 Invalid marker → Buffer overflow occurred

 No code changes required

 Only mitigates stack-based BOF

 Knowledge of canary allows bypassing

 9



RAD

 Read-only stack for return addresses

 Compared before return

 Compiler extension

 Only against stack-based BOF

 10



Bounds Checking

 Each indexing operation is checked

 100% effective (where applied)

 Non-trivial runtime overhead

 Used in languages with runtimes (Java, C#, Python, 
…)

 11



Dependent Types

 Value (size) is associated with a buffer

 Only allow indexing with validated values

 Language extension

 Lot of work to use, but type inference helps

 12



State of the Art

 Major OS implement ASLR

 Compilers implement PIE, NX, Stack Canaries 
(discussable defaults)

 13

Mitigation GCC? clang?

PIE No No

NX Yes Yes

Stack 
Canary

No No



State of the Art

 Most techniques only prevent exploitation (code 
execution)

 DoS might be just as critical (aviation, autonomous 
driving, ...)

 Only dependent typing and RBC actually prevent 
BOF

 14



Conclusion

 Use C, C++ and Fortran only if unavoidable and 
enable compiler mitigations

 Viable alternatives exist (Rust, Go, Java, ...)

 15



 Thank you for listening

 16


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

