
Overview Over Attack Vectors and
Countermeasures for Buffer Overflows

Valentin Brandl
Faculity of Computer Science and Mathematics

OTH Regensburg
Regensburg, Germany

valentin.brandl@st.oth-regensburg.de
MatrNr. 3220018

Abstract—TODO
Index Terms—Buffer Overflow, Software Security

I. MOTIVATION

When the first programming languages were designed,
memory had to be managed manually to make the best use
of slow hardware. This opened the door for many kinds of
programming errors. Memory can be deallocated more than
once (double-free), the programm could read or write out of
bounds of a buffer (information leaks, buffer overflows). Lan-
guages that are affected by this are e.g. C, C++ and Fortran.
These languages are still used in critical parts of the worlds
infrastructure, either because they allow to implement really
performant programms, because they power legacy systems or
for portability reasons. Scientists and software engineers have
proposed lots of solutions to this problem over the years and
this paper aims to compare and give an overview about those.

Reading out of bounds can result in an information leak and
is less critical than buffer overflows in most cases, but there
are exceptions, e.g. the Heartbleed bug in OpenSSL which
allowed dumping secret keys from memory. Out of bounds
writes are almost always critical and result in code execution
vulnerabilities or at least application crashes.

II. MAIN PART, TODO

A. Background

1) Technical Details: Exploitation of buffer overflow vul-
nerabilities almost always works by overriding the return
address in the current stack frame, so when the ‘ret‘ instruction
is executed, an attacker controlled address is moved into the
instruction pointer register and the code pointed to by this
address is executed. Other ways include overriding addresses
in the PLT of a binary so that, if a linked function is called,
an attacker controlled function is called instead, or (in C++)
overriding the vtable where the pointers to an object’s methods
are stored.

2) Implications:

B. Concept and Methods

1) Runtime Bounds Checks: The easiest and maybe single
most effective method to prevent buffer overflows is to check,
if a write or read operation is out of bounds. This requires

storing the size of a buffer together with the pointer to the
buffer and check for each read or write in the buffer, if it is
in bounds at runtime.

2) Prevent/Detect Overriding Return Address: Since most
traditional buffer overflow exploits work by overriding the
return address in the current stack frame, preventing or at least
detecting this, can be quite effective without much overhead
at runtime. Chiueh and Hsu describe a technique that stores
a redudnant copy of the return address in a secure memory
area that is guarded by read-only memory, so it cannot be
overwritten by overflows. When returning, the copy of the
return address is compared to the one in the current stack
frame and only, if it matches, the ret instruction is actually
executed[1]. While this is effective against return oriented
programming based exploits, it does not protect against vtable
overrides.

An older technique from 1998 proposes to put a canary word
between the data of a stack frame and the return address[2].
When returning, the canary is checked, if it is still intact and
if not, a buffer overflow occurred. This technique is used in
major operating systems but can be defeted, if there is an
information leak that leaks the cannary to the attacker. The
attacker is then able to construct a payload, that keeps the
canary intact.

3) Restricting Language Features to a Secure Subset:
4) Static Analysis:
5) Type System Solutions: Condit, Harren, Anderson, et al.

propose an extension to the C type system that extends it with
dependent types. These types have an associated value, e.g.
a pointer type can have the buffer size associated to it. This
prevents indexing into a buffer with out of bounds values.

6) ASLR: ASLR aims to prevent exploitatoin of buffer
overflows by placing code at random locations in memory.
That way, it is not trivial to set the return address to point to the
payload in memory. This is effective against generic exploits
but can still be exploited in combination with information
leaks or other techniques like heap spraying. Also on 32 bit
systems, the address space is small enough to try a brute-force
attempt until the payload in memory is hit.

7) wˆx Memory: This mitigation makes memory either
writable or executable. That way, an attacker cannot place
arbitiary payloads in memory. There are still techniques to



exploit this by reusing existing executable code. The ret-to-libc
exploiting technique uses existing calls to the libc with attacker
controlled parameters, e.g. if the programm uses the ”system”
command, the attacker can plant ”/bin/sh” as parameter on the
stack, followed by the address of ”system” and get a shell on
the system. Return oriented programming (a superset of ret-
to-libc exploits) uses so called ROP gadgets, combinations of
memory modifying instructions followed by the ret instruction
to build instruction chains, that execute the desired shellcode.
This is done by placing the desired return addresses in the right
order on the stack and reuses the existing code to circumvent
the wˆx protection.

C. Discussion

1) Ineffective or Inefficient: Methods that have been shown
to be ineffective (e.g. can be circumvented easily) or inefficient
(to much runtime overhead)...

2) State of the Art: What techniques are currently used?

III. CONCLUSION AND OUTLOOK

While there are many techniques, that protect against differ-
ent types of buffer overflows, none of them is effctive in every
situation. Maybe we’ve come to a point where we have to stop
using memory unsafe languages where it is not inevitable.
There are many modern programming languages, that aim for
the same problem space as C, C++ or Fortran but without
the issues comming/stemming from these languages. If it is
feasible to use a garbage collector, Go might work just fine. If
real-time properties are required, Rust could be the way to go,
without any language runtime and with deterministic memory
management. For any other problem, almost any other memory
safe language is better than using unsafe C.

IV. SOURCES

• RAD: A Compile-Time Solution to Buffer Overflow At-
tacks[1] (might not protect against e.g. vtable overrides,
PLT address changes, . . . )

• Dependent types for low-level programming[3]
• StackGuard: Automatic Adaptive Detection and Preven-

tion of Buffer-Overflow Attachs[2] (ineffective in combi-
nation with information leaks)

• Type-Assisted Dynamic Buffer Overflow Detection[4]

REFERENCES

[1] T.-c. Chiueh and F.-H. Hsu, “RAD: A Compile-Time So-
lution to Buffer Overflow Attacks,” in 21st International
Conference on Distributed Computing Systems, 2001.

[2] C. Cowan, C. Po, D. Maier, J. Walpole, P. Bakke, S.
Beattie, A. Grier, P. Wagle, and Q. Yhang, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks,” in 7th USENIX Security Symposium,
1998.

[3] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C.
Necula, “Dependent types for low-level programming,”
in Programming Languages and Systems, R. De Nicola,
Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 520–535, ISBN: 978-3-540-71316-6.

[4] K.-s. Lhee and S. J. Chapin, “Type-Assisted Dynamic
Buffer Overflow Detection,” in 11th USENIX Security
Symposium, 2002.


	Motivation
	Main Part, TODO
	Background
	Technical Details
	Implications

	Concept and Methods
	Runtime Bounds Checks
	Prevent/Detect Overriding Return Address
	Restricting Language Features to a Secure Subset
	Static Analysis
	Type System Solutions
	ASLR
	w^x Memory

	Discussion
	Ineffective or Inefficient
	State of the Art


	Conclusion and Outlook
	Sources

