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Abstract—Stack Smashing Protector (SSP), Address-Space
Layout Randomization (ASLR) and Non-eXecutable (NX) are
techniques for defending systems against buffer overflow attacks
but not limited to them. These mechanism are available in modern
operating systems like Android, GNU/Linux and Windows.

Unfortunately, to keep up with the rapidly evolving landscape
of cyber-security it is necessary to reassess the effectiveness of
these protection techniques to avoid a false sense of security. This
paper assess the effectiveness of these techniques against stack
buffer overflow exploitation.

Our study indicates that the SSP technique is the most effective
against stack buffer overflows. On forking servers, the ASLR
technique is almost useless on 32-bit architectures due to the
limited entropy provided by the size of the address space. The
recently proposed technique RenewSSP, which is an improvement
of the well known SSP, outperforms the original SSP in all the
cases; it is highly effective against the dangerous byte-for-byte
attack and on systems with low secret entropy as x86 and ARM.

I. INTRODUCTION

Over the years, a set of defensive techniques have been
developed to protect malicious users. The security field is
a very active always changing area, where the innovations
and advances renders obsolete the technology. Therefore, it is
mandatory to periodically reassess the effectiveness of those
techniques. The requisites and constraints that were considered
when a technique was initially developed, may be no longer
valid when applied to current systems. Some protection tech-
niques are outdated by changes on the execution framework
or by newly developed counter attacks.

Stack Smashing Protection [1], Renew Stack Smashing
Protector [2], Address-space Layout Randomization [3] and
Non-eXecutable [4] are techniques that mitigate the execution
of malicious code. They do not remove the underlying error
which leads to a vulnerability but prevents or hinders the
exploitation of the fault. The key idea of first three techniques
(SSP, RenewSSP and ASLR) is to introduce a secret that must
be known by the attacker in order to bypass it; and to restrict
the execution capabilities of the processes in the case of the
NX technique.

In this paper, the authors evaluate the effectiveness of each
technique both when used individually and when combined,
on different execution environments, considering different er-
ror manifestations and different exploitation techniques with
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respect to the stack buffer overflow vulnerability. According to
SANS [5] it is the third most dangerous out of 20 vulnerability
in current systems.

The main contributions of this paper are the following:

1) A statistical characterization of the remote attacks against
the NX, SSP, RenewSSP and ASLR protection techniques
and when used in combination.

2) A detailed analysis of the time needed to break-in and
the probability of success is also presented.

3) We identify the scenarios (executing framework, operat-
ing system, etc.) which jeopardise the expected effective-
ness of the classical techniques (SSP and ASLR), due to
information leaks.

4) The results show that the RenewSSP is a promising
modification of the SSP which makes the SSP robust
against brute-force-attacks under all scenarios.

This paper is organised as follows. Section II presents the
background and context needed to undertake the statistical
analysis: 7) the analysed vulnerability; ii) the execution envi-
ronment where the programs are executed; iii) the protection
techniques under study; iv) the threats to bypass the protection
techniques; v) and finally the generic structure of an attack.
Section III presents an statistical analysis of the attacks; special
attention is given to the forking server since it is the most
widely used. Section IV evaluates the practical effectiveness
of the techniques on current systems. Finally, the concluding
section summarizes the contributions of the paper and sketches
the main findings.

II.

The four techniques analysed are used with minor mod-
ifications in most modern operating systems. Each operat-
ing systems has its own particularities. In order to avoid
excessive duplication, we have used only the UNIX style
(fork (),exec (), etc.) to refer to the way processes are
created. The conclusions are applicable to the other systems.

BACKGROUND AND TERMINOLOGY

A. Stack buffer overflow vulnerability

The stack buffer overflow vulnerability (also known as
stack smashing) occurs when a program writes to a memory
address on the program’s call stack outside of the intended data
structure; usually a fixed length buffer. Stack buffer overflow
bugs are caused when a program writes more data to a buffer
located on the stack than there was actually allocated for that
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void vuln_function (char xsrcbuff,
char buff[48];

int lsrcbuff) ({

memcpy (buff, srcbuff, lsrcbuff);

}

Listing 1. Example function which has a stack buffer overflow.

buffer, which most of the times results in corruption of adjacent
data on the stack. When the overflow is done accidentally (i.e.
it is not malicious), the program behalves improperly due to
data corruption or executes illegal instructions which trigger a
program crash.

But, if the attacker is able to control the way the overflow
is produced (i.e. it is intentional), then it may take the control
of the execution flow of the buggy program in such a way
that they may execute arbitrary code. This is illustrated in the
listing 1 which is an example with memcpy (). which shows
a trivial example of a stack buffer overflow.

The canonical method for exploiting a stack based buffer
overflow is to overwrite the return address stored in the stack
with a pointer to an attacker’s selected direction.

B. Types of server architectures

The execution environment and architecture of the
server have an important impact on the effectiveness of each
technique. Attending to the impact on the protection techniques
we have identified three different server architectures.

Single process A single process server is a program that
attends itself all client requests. Attending to the inter-
nal architecture of the server we can distinguish three
different sub-types: i) sequential, ii) event based and
iii) multi-thread. From the point of view of the security,
all the three sub-types have the same behavior. We assume
that the server crashes when an incorrect faked request is
received, and then the service is stopped at once. There
is little chances to break into the server, but it is easy to
perform a DoS attack.

Inetd Every client request is attended by a different pro-
cess launched from the server using the sequence
fork () —+exec (). A new process image is loaded in
memory, and so, all the secrets used by the child process
during each client request are renewed.

We decided to use the inetd name to honor the old
network server daemon. This sequence is also called self-
reexecution, which is used by the SSH suit.

Forking The operation of a forking server is very close
to that of the inetd, but the children processes are in
charge of directly attending the client requests, that is,
no new executable image is loaded using the exec ()
call. Therefore, all the children have the same secrets as
the father (except when the new RenewSSP technique is
used). The behaviour of these kinds of servers can be used
by the attackers to perform more effective attacks.
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Android applications belong to this “category”. All An-
droid applications are child processes of the Zygote
process. The difference with respect to a conventional
forking server is that although each child executes the
same Dalvik virtual machine, the application is different
on each one.

C. Protection techniques

Following is an overview of the four techniques analysed in
this paper.

NX or DEP Memory sections (pages) of the process which
contain code are marked as executable and read-only. On
the other hand, those areas containing data are marked as
read/write and non-executable. Processors must provide
hardware support to check for this policy when fetching
instructions from main memory. Even if an attacker
successfully injects code into a writeable (not executable)
memory region, any attempt to execute this code would
lead to a process crash. This technique is also known
as “W”X” because a memory page can be marked as
executable or writable, but not both at the same time.

SSP A random value, commonly known as canary or guard, is
placed on the stack, just below the saved registers by the
function prologue code. That value is checked at the end
of the function, before returning, and the program aborts
if the stored canary does not match its initial value. Any
attempt to overwrite the saved return address on the stack
will also overwrite the canary which leads to a process
crash to prevent the intrusion.

ASLR Whenever a new process is loaded in main memory, the
operating system loads the different areas of the process
(code, data, heap, stack, etc.) at random positions in the
virtual memory space of the process. Attacks relying on
precisely knowing the absolute address of the injected
code or a library function, like ret21ibc, are very likely
to crash the process (unless they know the memory map of
the target process), thus preventing a successful intrusion

RenewSSP It is a modification of the stack-smashing pro-
tector (SSP) technique which renews the value of the
reference canary of a process on any ‘“non-returning”
function [2]. It is specially effective when used on the
child’s code right after the new process is created with
the fork () or clone () calls.

D. Threats to the protection techniques

Over the years, several strategies to bypass each protection
technique have been developed, [6], [7], [8]. Due to space
limitations, only the core of each attack strategy is presented.
We do not considers attacks based on information leaks other
than the one that can be obtained from the stack buffer
overflow vulnerability; other forms of information leak require
the existence of additional vulnerabilities and are out of the
scope of this work.

Following is a brief description of the attacks considered in
the paper.



Listing 2.

NX/DEP The Non-eXecutable bit (NX)/Data Execution Pre-

vention (DEP) mechanism can be bypassed using attacks
that do not require to execute the injected code but
reuse the already existing and mapped code on the target
application. There is a family of techniques referred as
ret2* [9] and more generally the Return Oriented Pro-
gramming (ROP) technique [10]. ROP is a very effective
technique to bypass the NX. As a result, ASLR counter-
measure was developed.

It is realistic to assume that modern attacks do not inject
code, but use the ROP method. Therefore, from now on
we will assume that the NX bit protection is bypassed
directly, and then the security relies on the effectiveness
of the remaining techniques.

It is important to point out that although the NX is de-
feated by the ROP, it must not be considered deprecated,
and shall be maintained as far as the ASLR is not 100%
secure and the NX does not introduce any execution
overhead.

SSP-tat SSP trial-and-test. If the canary value is replaced or

renewed after each trial, then the experiment is known
as “sampling with replacement”. The attacker can try at
will, but it can not discard the already tested value.

SSP-bff SSP brute-force-full. In order to perform this attack

the target service always has the same canary value and
the service is restarted automatically after any server
crash. The attacker can try as many times as needed
the attack. On each trial, the attacker guesses a different
value of canary until it matches. Since the canary value
is always the same on the server, the attacker can discard
incorrectly guessed values. Statistically, this is known as
“sampling without replacement” experiment. Typically,
the values are tested sequentially starting from zero up
to the maximum value.

1  for (k=0; k<c; k++)
2 if( OK == end_request_up_to_canary (k) )
3 break;

4 printf("Canary value: %d\n", k);

Brute force to the canary.

SSP-bfb SSP byte-for-byte. If the manifestation of the error

allows attackers to overflow up to the desired byte with
any value, then it is possible to perform the byte-for-byte
attack. It consists in trying all possible values of each
byte sequentially. The code on listing 3 implements the
code of the attack [11],[12]. All values from zero to 255
are tried sequentially until the correct value is found. The
process continues with the next byte until all the bytes
have been found.

This method allows to build very fast attacks. Unfortu-
nately (for the attacker) this possibility is quite odd.

RenewSSP-tat RenewSSP trial-and-test. The brute force at-

tack can not be employed against the RenewSSP, as
pointed by the authors in [2]. In this scenario the only
attack strategy is trial-and-test against the whole canary,
independently of type of server (single, inetd or forking).

ASLR-bff ASLR brute force full. To bypass the ASLR, the

attacker needs to know the absolute address where the
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1  wunion {

2 unsigned char single_bytes[n];

3 unsigned int full val;

4 } secret;

5 int idx, k=0;

6 for (idx=0; idx<n; idx++) {

7 for (a=0; a < 256; a++){

8 if ( OK == send_request_up_to(idx, a) ) {

9 secret.single_bytes[idx]=a;

10 k += (a + 1);

11 break;

12 }

13 }

14

15 printf("Secret value: %$x\n", secret.full_val);
16 printf("Trials needed: %d\n", k);
Listing 3. Byte-for-byte attack.

ROP “program” starts [13]. If the memory map is the
same in all the attacker trials and the attacker can perform
as many trials as required, then it is possible to build
a brute force attack [8], that is, an experiment “without
replacement”.

ASLR-tat ASLR trial-and-test. When the memory map of the

server is renewed after every trial (of after a fail trial), then
the attacker can try different values of base address until
it matches. But it can not discard already tested ones.

ASLR-one ASLR one shot. If there are one or more memory

sections of the server that are not randomised then the
attackers can use the statically (and so known) areas to
build the ROP sequence. For example, when the code of
the application (not the libraries) is not randomised, then
it is possible to build a one-shot attack with a probability
of 95.6% in x86, and 61.8% in x86_64, as shown by
Roglia et al. [7]. This attack is effective on all server
architectures.

Another strategy to bypass the ASLR is by directly
observing the memory map of the target. Most operating
systems (Windows, Android applications, and the other
major player OS) libraries are randomised only per boot
time and shared between all the applications. Any local
user knows the ASLR secret. On those systems, the ASLR
is completely useless from a local attack.

The GNU/Linux, which implements the position indepen-
dent code (PIC) for libraries and when the executable is
compiled with position independent executable (PIE), is
not affected by the ASLR-one attacks on local attacks.
Another form of disclosure is through the information
which some applications automatically report to the ven-
dor provider (as debugging information) after a crash,
which could contain valuable information to the attacker.
We will consider that the ASLR is bypassed with a ASLR-
one when there are enough gadgets to build the attack
according to [7] or when it is a local attack on systems
where the ASLR randomization only done at boot time.



E. Generic structure of an attack

In this work, we will consider that the attackers have
access to the following information: i) access to the source
code, ii) compiler and built options and iii) the execution
environment of the target. The attacker can work off-line, using
an in-house replicated target, testing and tuning the attack as
long as necessary before the attack to the target is actually
started.

The work that can be done off-line is considered to have no
cost. That is, it takes zero time to achieve it. This is a realistic
assumption (from the defendants point of view) because the
attack starts only when the server is effectively attacked.

The attack consists on sending faked client requests,
specially designed to overflow a buffer. The faked client
request can be seen as a string long enough to overflow the
buffer with the following elements (figure 1):

Padding eEhERa'A Padding EaiaAiiasWiEtelehaYEl ROP payload

Fig. 1. Fields of a fake request.

Padding to canary Extra bytes inserted to increase the length
of the request. The number of added bytes must be
computed so that the next field exactly overwrites the
stack canary. The length of this field can be accurately
estimated off-line from the binary image of the server
and a few trials against the target server. Since the cost of
this part is relatively low, we will assume that the attacker
know this value.

Canary This field will overwrite the canary. In order to
succeed, it is necessary to know the actual value of the
frame canary used in the target server. The canary is
commonly a word (4 or 8 bytes). Let C be the entropy
bits of the canary.

Padding to return Typically it is a few bytes (4 or 8 depend-
ing on the platform). We will assume that the attackers
do not need to know these values (to build a ROP).

Return address Absolute entry point of the ROP code. The
ROP code is located in a section with execution rights.
We will suppose that the attacker must know the current
memory layout of the server. Let R be the entropy bits
of the ASLR.

ROP payload The injected ROP payload. This payload is
basically a list of gadgets addresses. Gadgets are blocks
of code located at relative positions with respect to the
ROP entry point. Therefore, once the attacker know the
entry point of the ROP, the rest of the ROP payload
can be automatically adjusted with the appropriate offset.
We will assume that the attackers are able to both build
the ROP and adjust the resulting payload to the server
memory layout once it is known the entry point (i.e. the
jump address). Therefore, no extra information is required
to build this field.

The grey fields of the request on Figure 1 can be filled by
the attacker inspecting off-line the code of the server. But dark
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Symbol Description
C entropy bits of the canary.
n number of entropy bytes of the canary (n = C/8).
c number of values that can take the canary (¢ = QC).
R entropy bits of the ASLR for libraries.
r number of places where the library can be located (r = 2%).
k number of trials (attempts) done by a attacker to a service.

TABLE 1. SUMMARY OF SYMBOLS.

fields can only by obtained through direct “interaction” with
the target. In most cases the attacker has a very limited and
controlled interaction path.

It can only submit a faked request and wait for the result.
There are basically only two possible values for the result:

1) The server returns an answer, which is interpreted by the
attacker as a correct guess. That is, the faked request did
not crash the server.

2) The server does not respond, which is interpreted as an
incorrect guess. The server should have crashed.

Depending on the architecture and execution environment
of the server, they interpret the result differently (success or
failure) and will tune or adjust the faked request.

III. ANALYSIS OF THE PROTECTION TECHNIQUES

This section analyzes the protections mechanisms for each
server type. The probability of a successful attack is measured
as the number of trials needed to break in the system.

A. Single process server

The attacker have only one single trial (assuming that the
server service is not restarted by the administrator) to both the
SSP and the ASLR. The probability to break into the system
is given by the Bernoulli distribution:

1— L
n): {i cr
cr

As far as the values of ¢ and r are commonly large, there
is little chances to break-in. There is little interest on trying
to break-in unless other vulnerabilities or memory leaks are
available (which are out of the scope of this paper). This type
of server has been included for completeness.

if n = 0, failure”
if n =1, ”success”

Pr(Xx

ey

B. Inetd based server

The attacker can do as many trials as needed. On each trial,
they have the same probability of success: %T There is no
benefit on attacking first the canary and then the return address
because there is no way to learn from previous failures. The
attack is SSP-tat jointly with the ASLR-tat.

This strategy is modelled as a Bernoulli trial experiment: %
trials are made with a probability of c—lT of success in any trial.
We are interested in counting the number of trials needed to
get the first success, which follows a Geometric distribution
defined for an infinite number of trials on the range k € [1, co|.



1
0.95
0.86
038 /
03 /
0.5
0.4
0.2 /
1-(1-%)" —
T T
0 69er<" ~2cr k~3cr
Geometric

PMF L (1-1)"

CDF 1- (1- i)

Mean p=cr

Variance o2 = 1;:"
Trials for 100% = oo
95% ~3cr
50% ~0.693cr
TABLE IL. INETD BASED SERVER SUMMARY.

The probability that the k" trial is the first success is given
by the PMF:

1

k—1
1
cr

cr

(@)

The cumulative distribution function (CDF) provides more
valuable information; rather that the probability of succeeding
at exactly the k*" trial, we are interested in the probability of
succeed at any time up to the k" trial. The CDF is defined as

Pr(X < k) and is given by:
1\i! 1\*
(-2 )
cr cr
Since both secrets must be correctly guessed at once, the
probability of success at each trial is one out of ¢ X r.

k

-y

i=1

1

Pr(X <k)
cr

C. Forking server

The behaviour of these kinds of servers can be used by the
attackers to perform more effective attacks. The rest of this
section covers in detail how each protection technique can be
bypassed, both individually and when used in combination.

1) SSP brute-force-full (SSP-bff): It is assumed that the
behavior (success or fail) of the server can be detected, for
example an incorrect guess closes the connection abruptly.

The probability that at the k** trial the attacker try the
correct value is given by the Uniform distribution with a PMF
given by Pr(X, = k) = <. And the cumulative distribution
function (CDF) is the sum of the PMF: Pr(X. < k) =
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k 1 _

This distribution function is only “valid”! i
the range [0, k] Table III is a summary of the attack agalnst
the whole canary.

I
0.95 /
038 /
0.6
0.5
0.4 /
02
B
c

0 k=c/2 E=c
Uniform
Mean p=c/2
Variance o> = (¢ —1)/12
PMF 1/c
CDF  k/c
Trials for 100% =c
95% = 0.95¢
50% =c/2
TABLE IIL SUMMARY OF THE SSP-BFF.

2) SSP byte-for-byte (SSP-bfb): Note that overflows caused
by most string manipulation functions can not be used to
implement this attack because a null byte is always copied
at the end.

Each brute force attack against a single byte can be modelled
as an Uniform distribution. The sum of several, n in our case,
uniform distributions is known as the Irwin-Hall distribution,
which quickly (for » > 3) approximates quite accurately for
our purposes to a Normal distribution. The Figure on Table IV
shows how the CDF changes with the length (number of bytes)
of the canary. It is important to note that regardless the number
of bytes, all CDF reach the value of one when a = 256 X
BYTES_PER_WORD. That is, in the worst case, they have to
do 256 x BYTES_PER_WORD trials to break the canary.

A vulnerability of this type is very dangerous. The canary
can be obtained in no more than one second regardless the
word width of the architecture.

3) RenewSSP trial-and-test (RenewSSP-tat): This attack
strategy is modelled as a Bernoulli trial experiment: k trials
are made with a probability of % of success in any trial; and
the number of trials needed to break in the system is modeled
as a Geometric distribution. The summary is in Table II, where
the value of » = 1, since in this case we are considering only
bypassing the canary.

4) ASLR brute-force-full (ASLR-bff): In forking servers the
libraries mapping is inherited by all children. Therefore the
ASLR-Dff has the same behavior (distribution) than the attack

To be mathematically correct it shall be said that its “support is”.



1
0.95
0.8
0.6
0.5
0.4
/S lbyte(n =1 —
02 i 2 bytes (n = 2) ----—--
3 bytes (n = 3) -------
4 bytes (n = 4) -
o Jrl . .
0 256 512 768 1024
Sum of n uniforms
~ Normal when n > 3
Mean — 256n _ 256logy(c)
: 2 _ (225671)71,
e Howwiiao)
= Vzre2 €
1 [
CDF =L (1—erf(254))
Trials for 100% = 2pu
95% = p+ 1.6450°
50% =pu
TABLE IV. SUMMARY OF THE SSP-BFB.

to whole canary, i.e. a Uniform distribution, sampling without
replacement. The mean is /2 and its range is [0, 7]. Table III
can be applied to the ASLR-bff attack only changing the
variable ¢ by r.

5) SSP brute-force-full + ASLR brute-force-full (SSP-bff +
ASLR-bff): Since it is possible to split the attack in two
phases, first attack the canary and then the ASLR. When the
whole word of the canary has to be the attacked, the resulting
distribution is the sum of two Uniforms. Where each Uniform
have a different range of values: [0, ¢] for the canary and [0, ]
for the ASLR. The sum of two different uniforms gives a
trapezoidal distribution. If ¢ = r then it becomes a triangular.

For simplicity, we will assume that ¢ > r. The PMF es
given by:

for k € (2,5 +1]

forker+1,c+1]
forkec+1,c+r|

k—2
(61—1)(7“—1)
= “

_ctr—k _
(e=1)(r—1)

When the value of  is much smaller than that of ¢, as it is
the case on real systems, the expression 4 can be approximated
to a Uniform distribution.

6) SSP byte-for-byte + ASLR brute-force-full (SSP-bfb +
ASLR-bff): In this case it is also possible to split the attack
to bypass first the SSP and then the ASLR. The statistical
distribution of the attack to the canary plus the ASLR is given
by the sum of the distributions of both random variables. In the
case that the canary can be attacked with the SSP-bfb method,
then it can be computed as the sum n + 1 Uniforms variables
(n of the SSP plus the uniform of the ASLR-bff). Where n
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1
0.95
0.8
0.6
0.5
0.4
& =256 —
€ =16 oo
J
0.2 e g
J
< 2
J
T
0 4= ctr
Trapezoidal
~ Uniform when ¢/r > 256
_ ot
Mean ,uzf = ,
Variance o~ = C*{;
PMF 11;
CDF  ~ - e
Trials for 100% =c+1r
95% =0.95(c+r)
50% =0.50(c+7)
TABLE V. SUMMARY OF THE SSP + ASLR-FULL ATTACK.

is the number of unknown bytes of the canary and R/8 the
entropy bytes introduced by the ASLR. And the result is even
closer to a normal distribution. The parameters of the resulting
Normal are:

256(n+R/8)
2

Mean uw=

Variance o2 = 7(25671)1(2n+R/ 8)

7) RenewSSP  trial-and-test + ASLR  trial-and-test
(RenewSSP-tat + ASLR-tat): The attack strategy to bypass
this combination of techniques is similar to that used for
the inetd server. There is not benefit on attacking first the
canary and then the ASLR because there is no way to
learn/discard from previous trials. Each trial ha the same
probability of success: i This strategy is modelled as a
Bernoulli trial experiment: & trials are made with a probability
of % of success in any trial. Equation 2 shows the PMF
and the cumulative distribution function (CDF) is showed in
equation 3.

D. Servers summary

This section is a summary of the most relevant statistical
parameters for single, inetd and forking servers. The forking
server is the most interested because it is widely used in real
systems.

In real systems, NX, SSP or RenewSSP and ASLR are
used simultaneously. Table VI shows the distribution, mean,
variance, and trials required to break the system with a
probability of 100%, 95% and 50%. The same Table VI with
the value of » = 1 represents the cost of the attacks when the
ASLR can be bypassed with the ASLR-one attack.



Trails for a prob. of:
Distrib. " 100% 95% 50%

Single: . 1
Single-Shoot Bernoulli er B B B
Inetd: .
SSP-tat+ASLR-tat__ S%O™ ” - Bu 0-6934
Forking: . ctr
SSP-bff+ASLR-bff  Oniform 2 2 0-95u K
Forking: 28n4r 2
SSP-bfb+ASLR-bf Normal 3 2 p+ 1.6450 w
Forking:
RenewSSP-tat+ Geom. cr o} 3u 0.693u
ASLR-tat
Forking:
RenewSSP-tat+ Geom. c e’} 3u 0.693u
ASLR-one

TABLE VL SUMMARY OF THE MOST COMMON SYSTEMS AND

ATTACKS.

IV. DISCUSSION

To evaluate the effectiveness of the NX, SSP, RenewSSP and
ASLR, we have selected the most common server architectures
and configurations. Current systems are all protected with the
three protection techniques: NX, SSP and ASLR. We have also
included the RenewSSP technique which although not widely
used, we expect that it will replace the original SSP in the near
future.

The cost is measured as the number of attempts (trials)
needed by the attackers to break-in the system, summarised
in Table VII.

| Attack/Bypass | 100% Mean
. SSP-bff + ASLR-bff 4 Hours 2 Hours
2z SSP-bff + ASLR-one 4 Hours 2 Hours
- SSP-bfb + ASLR-bff 1 sec <1 sec
F SSP-bfb + ASLR-one <1 sec < 1 sec
& RenewSSP-tat + ASLR-one 00 3 Hours
RenewSSP-tat + ASLR-tat oo 34 Days
) SSP-bff + ASLR-bff 2.32 Myr 1.16 Myr
2z SSP-bff + ASLR-one 2.32 Myr 1.16 Myr
- SSP-bfb + ASLR-bff 74 Hours 37 Hours
F SSP-bfb + ASLR-one 1 sec < 1 sec
3 RenewSSP-tat + ASLR-one oo 1605.79 Kyr
RenewSSP-tat+ASLR-tat o] 431.05 Tyr
TABLE VIL TIME COST FOR ATTACKS IN FORKING SERVERS AT 1000

TRIALS/SEC.

The system is broken when the secrets are correctly guessed.
The values been calculated using the following parameters:

e the system configuration (processor, network, firewalls,
etc..) allows the attacker to perform 1000 trials per
second,

o the entropy of the SSP and RenewSSP is 24 and 56 bits
for 32 bits and 64 bits systems respectively,

o the entropy of the ASLR is 8 and 28 bits for 32 bits and
64 bits systems respectively.

On systems which are regularly monitored by humans or other
advanced event correlation tools, the techniques are effective
if the time to bypass them is longer than the reaction time.
A protection of a few hours can give to the defenders enough
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time to apply specific corrective measures. On stand-alone non-
supervised systems, the system shall resist in the order of years
to be considered effective.

Table VIII is a more complete list of systems and attacks,
including combinations that are no longer released but may be
still operative.

32 bits 64 bits

| Technique \ 100% Mean | 100% Mean

3 | SSP-tat co 1.2 x 107 oo 5.0 x 106
£ | ASLR-one 1x10° 0.5 x 10° 1x10° 0.5x 10°
= | ASLR-bff co 1.8 x 102 oo 1.9 x 108
2 | SSP-tat+ASLR-one 0o 1.2 x 107 0o 5.0 x 1016
™ | SSP-tat+ASLR-tat co 3.0 x 10° oo 1.3 x 10%°
SSP-bff 1.7 x 107 8.4 x 10° | 7.2 x 10'® 3.6 x 10'°
SSP-bfb 7.7 x 102 3.8 x 102 | 1.8 x 10> 9.0 x 102

— | RenewSSP-tat co 1.2 x 107 oo 5.0 x 106
% | ASLR-one 1x10° 1x10° 1% 10° 1% 10°
© | ASLR-bff 2.6 x 102 1.3 x 10?| 2.7 x 108 1.3 x 10®
£ | SSP-full+ASLR-one 1.7 x 107 8.4 x 10° | 7.2 x 10'® 3.6 x 10'°
% | SSP-bff+ASLR-bff 1.7 x 107 8.4 x 10° | 7.2 x 10'® 3.6 x 10'°
= | SSP-bfb+ASLR-one 7.7 x 10% 3.8 x 10%| 1.8 x 10° 9.0 x 102
SSP-bfb+ASLR-bff 1.0 x 10® 5.1 x 10%| 2.7 x 10® 1.3 x 10®
RenewSSP-tat+ASLR-one co 1.2 x 107 oo 5.0 x 106
RenewSSP-tat+ASLR-tat co 3.0 x 10° oo 1.3 x 10%°

TABLE VIIL ATTEMPTS TO BYPASS PROTECTION MECHANISMS.

The following list summarises the most important results of
this evaluation.

e The NX was rendered mainly obsoleted first by the family
of ret2* attacks and then by the ROP. Although it slightly
increases the difficulty of building an exploit, since it
is an un-expensive technique (the check is performed
by hardware: the MMU), it still worthwhile using it.
Basically, there is no benefit in removing it from a system
where it is already implemented.
In the inetd architecture, the combination of the three
techniques (NX, SSP and ASLR) is a very effective, it
has a multiplicative effect.
This robust architecture is used by the SSH suite. Each
connection request is handled with the following se-
quence of system calls: fork () — exec (sshd)—
do_work— exit (). This way, it receives all random-
ization the operating system can provide.
In 64bit systems it is impossible to bypass, the mean time
is at least 1.605.000 years with probability 95% the best
case for the attacker. In 32bits, although it less effective,
it is still provides an acceptable protection.
This architecture is not affected by brute force attacks.
The dangerous byte-for-byte attack can not be employed
by the attackers even when the vulnerability allows to
overwrite at byte granularity.
Unfortunately, the forking server architecture greatly re-
duces the effectiveness of the protections, because it
allows new exploitation strategies:
o Split the attack of the SSP and the ASLR, which has
an additive effect rather than a multiplicative one.
o It is possible to implement brute force attacks to both
the SSP and the ASLR secrets.



o If the manifestation of the vulnerability allows over-
write at byte level then it is possible to make byte-for-
byte attacks.

In forking servers, the protection techniques are only

effective in 64 bits systems when the byte-for-byte can

not be employed. The byte-for-byte attack renders useless
the SSP and the ASLR is not strong enough on its own.

The RenewSSP technique restores the effectiveness of

both the SSP and the ASLR in forking servers. The

attacker can no longer discard tested values (i.e. brute
force attacks can not be make to the SSP). Also, it is not
possible to slit the SSP-ASLR attack.

Therefore the RenewSSP technique provides the same

level of protection than that of the inetd.

Both SSP and the ASLR techniques are basically use-

less against local attacks for Android Applications. All

Android applications share the same canary and memory

maps.

This problem only affects the Android applications, that

is, those the use the Dalvik virtual machine. On the other

hand, Android native processes enjoy one of the best
protections?.

The ASLR on Windows and the bitten fruit OSs is

implemented on a per-boot basis, which greatly reduces

the effectiveness against local attacks. The attacker know
the layout of all the libraries.

V. CONCLUSIONS

In this paper the authors reassess the effectiveness of three
mature techniques: NX, SSP and ASLR, as well as the new
RenewSSP (properly speaking, it can not be considered a new
technique but an improvement to the standard SSP). The study
has been focused to the stack buffer overflow vulnerabilities,
which is still one of the most serious security issues.

Besides the direct exploitation of the buffer overflow, this
paper consider the presence of multiple attack vectors, as for
example the possibility to obtain information from the target
service using applications that collect public data from within
the same system. Another attack vector considered is the weak
implementation of the ASLR on most systems (Windows,
Android, and the other) resulting in that all the applications
share the same library maps, which renders useless the ASLR
from local attacks.

Although the NX/DEP was a revolutionary technique when
initially developed, currently it been rendered obsoleted by new
attacking methods: ret* and ROP. Our evaluation indicates that
the ASLR on 64 bits systems is an effective counter-measure
against those new attacking methods but it is not for 32 bits
systems. The SSP effectiveness is reasonably good for both
64 bits systems but rather weak for 32 bits architectures even
when it is combined with the ASLR.

Both techniques, ASLR and SSP relay on keeping secret
some internal keys (the guard and the memory map for
SSP and ASLR respectively). There are a lot of information
shared/inherited from the father to the children processes, and

2As far as the current published state of the art is concerned.
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the fact that the normal policy applied when a server process
crashes is to restart the process automatically, allows to make
brute force attacks. The more often the protection secrets are
renewed, the harder will be for the attackers to bypass them.

Some systems (Android applications, Windows OSs and the
bitten fruit company OS) renew the secrets of the ASLR once
per boot, while GNU/Linux renew them on a per process
(exec () ) basis. The once per boot is not robust against local
attacks.

Our results show that the forking server architecture greatly
reduces the effectiveness of the protection techniques, specially
when the target system is vulnerable to the dangerous byte-
for-byte attack. When this type of vulnerability is present in
the application, the only solution is the recently proposed
extension to SSP called RenewSSP.
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