
RAD: A Compile-Time Solution to Buffer Overflow Attacks

Tzi-cker Chiueh Fu-Hau Hsu
Computer Science Department

State University of New York at Stony Brook
(chiueh, fhsu) @cs.sunysb.edu

Abstract
Buger overflow attack can inflict upon almost arbitrary

programs and is one of the most common vulnerabilities
that can seriously compromise the security of a network-
attached computer system. This paper presents a
compiler-based solution to the notorious buffer overflow
attack problem. Using this solution, users can prevent
attackers from compromising their systems by changing
the return address to execute injected code, which is the
most common method used in buffer overflow attacks.
Return Address Defender (RAD) is a simple compiler
patch that automatically creates a safe area to store a
copy of return addresses and automatically adds
protection code into applications that it compiles to
defend programs against buffer overflow attacks. Using it
to protect a program does not need to modifi the source
code of the protected programs. Moreover, RAD does not
change the layout of stack frames, so binary code it
generated is compatible with existing libraries and other
object files. Empirical pegormance measurements on a
fully operational RAD prototype show that programs
protected by RAD only experience a factor of between
1.01 to 1.31 slow-down. In this paper we present the
principle of bufSer overflow attacks, a taxonomy of
defense methods, the implementation details of RAD, and
the pedormance analysis of the RAD prototype.

1: Introduction

This paper presents a solution to the notorious buffer
overflow attack problem. Using this solution, users can
prevent attackers from compromising their systems by
changing the return address to execute injected code,
which is the most common method used in BO attacks.
Anecdotal evidence shows that BO attacks have already
been used to attack programs since the 1960s [18]. The
most famous BO attack is the Internet Worm written by
Robert T. Morris in 1988 [17]. Buffer overflow attacks
can inflict upon almost any kind of programs and is one of
the most common vulnerabilities that can seriously
compromise the security of a network-attached computer
system. Usually the result of such an attack is that the
attacker gains the root privilege on the attacked host.

Although the buffer overflow problem has been
known for a long time, for the following reasons, i t
continues to present a serious security threat. First,
programmers do not have the discipline to check array
bounds in their programs and most compilers do not do
this also thus programs with this vulnerability are
generated continuously. It is not easy to ask all
programmers to check array bounds in their programs. For
example, as of the writing of this paper, July 23rd 2000,
the title of one of the latest vulnerabilities reported by
CERT [5] is “ CA-2000-06 Multiple Buffer Overflows in
Kerberos Authenticated Services.” Secondly, not all
applications with this vulnerability have been found and
for those that have been found, it is not easy to replace all
of them. For the above reasons, having a tool to seal this
security breach automatically is very important.

Return Address Defender (RAD) is a compiler
extension that automatically inserts protection code into
application programs that it compiled so that applications
compiled by it will no longer be hijacked by return
address attackers.

Section 2 describes the principle of buffer overflow
attacks and a taxonomy of defense methods. Section 3
describes the design and implementation details of RAD.
Section 4 presents the effectiveness of RAD and its
performance overheads. Section 5 reviews related works
in this field. Section 6 is the conclusion.

2: Buffer Overflow Attacks

2.1: Principle of Buffer Overflow Attacks

If programs don’t check the size of the user input for a
buffer array and the size of the input data is larger than the
size of the buffer array, then areas adjacent to the array
will be overwritten by the extra data. The lack of such
“bound checks” creates the breeding ground for buffer
overflow attacks [3,4, 20, 221.

Program variables with similar persistence properties
are assigned into the same memory area. Within each area,
variables’, locations are adjacent to each other. Any
writing past the bound of a data structure will overwrite
adjacent data structures and change their values. If the

1063-6927/01$10.00 0 2001 IEEE
409

mailto:cs.sunysb.edu

overwritten area contains a function’s return address, then
when the function returns, this new value will be used as
the address of the next instruction after the return. So if a
hacker could inject hisher code into memory and change
a return address to point to the injected code, then he/she
can have the inserted code executed with the attacked
program’s privilege. Attackers can execute injected code
by applying the same method to function pointer variables
[23] as well.

low
address

bottom of stack
address

Stack
growth

I d a r r a y * .
local variables

~ _ _ _ _

Figure 1: buffer overflow attack steps:
(1) Feed the buffer array with the injected code through
any I/O statement in the attacked program. (2) Continue to
feed the attacked program with injected string. (3)
Overwrite the original return address with the new address
pointing to the injected code. The regions marked with **’
are data structures on the stack that get overwritten by
overflow attacks.

C compilers allocate space for local variables and the
return address of a function in the same stack frame.
Within each frame these objects’ locations are adjacent to
each other, as shown in Figure 1. Most C.compilers do not
perform array bounds checking. As a result, C programs’
arrays become the favorite targets of buffer overflow
attacks. In order to launch such an attack, all an attacker
needs to do is to (a) compose a string containing his/her
code and a return address pointing to the code, and (b)
insert the string into the correct place in some stack frame
of the attacked program through an U 0 statement. Then
when the function whose local buffer array is overwritten
returns, the injected code is executed. Because the
inserted code is executed with the attacked program’s
privilege, set-root UID programs and programs with root
privilege, e.g. daemons, are attackers’ favorite targets.

2.2: Defense Methods

Injecting malicious code and addresses into a victim
program (step A), changing its control flow at run time
(step B), and executing the injected code (step C) are the

410

three essential steps to successfully launch a buffer
overflow attack. A successful attack must have all of these
3 steps. Several different solutions have been proposed or
implemented to solve the buffer overflow problem
through preventing one or more of these 3 steps.
According to the strategy they use, we can classify these
defense methods into the following three categories.

The first type of defense methods defeats buffer
overflow attacks by prohibiting the injection of malicious
code. Richard Jones et al. [161 and OpenBSD [13] use this
strategy to protect programs. In Jones’s approach, they
developed an extension to GCC to automatically perform
array bounds and pointer checking. In OpenBSD, they
manually inspect and modify the kernel source code to
perform array bounds and pointer checking.

The second type of defense methods allows foreign
code to be injected and even modifications to return
addresses, but prohibits unauthorized changes of control
flow. So attackers can inject their code into memory and
can change return addresses, but control flow cannot be
transferred to the injected code. RAD and OGI’s
StackGuard [11 are both based on this strategy. RAD uses
RAR and StackGuard uses canary words to prevent
injected addresses from being used as return addresses of
function calls.

The third type of defense methods allows steps A and
B to take place, but disables step C. So code and
addresses can be injected into memory and control flow
can be transferred to the injected code, but the injected
code cannot be executed completely. Solar Designer’s
non-executable stack [141 and Sekar’s [24] and Lee’s [25]
intrusion detection methods use this strategy to protect
network applications from buffer overflow attacks. In
Solar Designer’s case, they make the stack non-executable;
so even though control flow can be transferred to the
injected code, the code cannot be executed. In Sekar’s
method, they manually build normaVabnormal behavior
patterns in terms of system call sequences and their
arguments for each program to be protected. By
comparing the run-time behavior of the protected program
with its known legitimate patterns, they can detect and
prevent the attacks. Lee’s method is based on a similar
principle, but uses a data mining approach to build up the
patterns dynamically. Both intrusion detection methods
allow injected code to be executed, but attempt to detect
abnormal behavior or known intrusion patterns to stop
malicious code.

3: Return Address Defender

RAD is a patch to gcc-2.95.2 that automatically adds
protection code into the function prologues and epilogues
of the programs compiled by it. So the source code does
not need to be modified. By overflowing a return address

with a pointer to the injected code, attackers can have the
code executed with the attacked program’s privilege.
Return address defender (RAD) prevents this by making a
copy of the function return address in a particular area of
the data segment called Return Address Repository
(RAR). By setting neighboring regions around RAR as
read-only, we can defend RAR against any attempt to
modify it through overflowing. Given that RAR’s integrity
is guaranteed, each time when a return address of a stack
frame is used to jump back to the caller function, this
address is checked with the copy in RAR. A return
address will be treated as un-tampered and thus safe to use
only if RAR also contains the same address.

There are two versions of RAD, MineZone RAD and
Read-only RAD, which protect the return addresses
stored in RAR in two different ways. Both methods are
portable. MineZone RAD is more efficient while Read-
Only RAD is more secure.

3.1: MineZone RAD

In MineZone RAD, we create a C file,
/hacker/global.c, and modify gcc-2.95.2, so the file is
automatically linked with programs compiled by RAD.
This C file contains all the function definitions and
variable declarations used in the new function prologues
and epilogues. In g1obal.c we declare a global integer
array and divide it into 3 parts as shown in figure 2.

Stack
Segment

Stack
growth I
RAR +.

growth rex- L

Lower Mine Zone

b
Figure 2 Structure of RAR and Mine Zones

The middle part of the global integer array is RAR,
which keeps a redundant copy of the return address of

each function call. The first and third parts, call mine
zones, are set as read-only areas by mprotecto system
call so that any writing attempts to these areas will cause a
trap. All protection functionalities are implemented as
instructions added to the new function prologues and
epilogues without changing the stack frame layout of each
function. Therefore programs compiled by RAD are
compatible with existing libraries and other object files. In
the new function prologue, the first instruction executed is
“pushing a copy of the current return address into RAR.”
In the function epilogue, before returning to the caller, the
callee compares the current return address with the top
return address in RAR. If they are the same, RAD will pop
it from RAR and go back to the caller. Otherwise this
means someone is attacking the return address, and a real-
time message and an email are sent to the system
administrator and the attacked program is terminated.
Figures 3 and 4 list the protection instructions’ pseudo
code.

Set areas around RAR as read-only

program starts and is executed only once. * /
If RAR is full

/ * This statement is executed when the

{ Send warning message to user;

1
Terminate the program;

Else
Push current return address into FWR;

Figure 3: Function Prologue Code

MineZone RAD is a simple and efficient mechanism
to protect return addresses, and it can survive attacks
through buffer overflow to overwrite RAR or stack frame
return addresses, which is the most common form of BO
attacks. But if the attacked program satisfies several
special conditions simultaneously, a Direct Return
Address Modification Attack could still compromise the
program even though it is protected by MineZone RAD.
In the next subsection we present a variant of RAD that
can resist DRAMA.

If (top return address in RAR== return address
in current stack frame)
(Pop the top return address in RAR;

Go back to caller;
1
Else
{ Send a real-time message and an email to the

system administrator;
Terminate the program; 1

Figure 4: Function Epilogue Code

3.2: Read-only RAD

If a program satisfies all the below statements and
conditions simultaneously, attackers could launch a direct
return address modification attack:

411

A statement of the form *A=B; where A is a
pointer variable and B is a variable.
A loop statement that copies user input into a
buffer array without checking its bounds, and the
array is adjacent to variable A.
A loop statement that copies user input into a
buffer array without checking its bounds, and the
array is adjacent to variable B.
Before *A=B is executed, statements in (2) and (3)
must have been executed. After statements in
condition (2) and (3) are executed, there are no
other statements that change A’s and B’s values.

Under the above conditions, attackers could launch an
attack in the following way: Before *A=B is executed, use
statements in conditions (2) and (3) in the attacked
program to change A and B‘s values. Then after
statement *A=B is executed, the address pointed to by the
new value of A will get the new value of B. In fact, using
this attack pattern, attackers can change the content of any
memory location, including return addresses. However, so
far we are not aware of any published exploit code that is
based on this attack pattern.

Read-only RAD is similar to Mine-Zone RAD. But
instead of setting up mine zones, Read-only RAD sets the
RAR itself as read-only to protect itself. As in MineZone
RAD, instructions preventing buffer overflow attacks are
added to the function prologues and epilogues. Figures 5
and 6 list their pseudo code. In Read-only RAD, RAR is
set as read-only most of the time. The only time that it
becomes writable is in the function prologues when the
current return address is pushed into RAR. Since there
cannot be any external input statements in the function
prologue instructions, so DRAMA doesn’t have any
chance to change RAR. Of course, because RAR is set as
read-only to update it in function prologues requires
adding two extra system calls to each function call,
causing a serious performance penalty.

Set RAR as writable;
If RAR is full
{ Send warning message to user;

Else

Set RAR as read-only;

Terminate the program; 1

Push current return address into RAR;

Figure 5 Function Prologue Code

If (top return address in RAR== return address
in current stack frame) ’

(Pop the top return address in RAFt;
Go back to caller; 1

Else
(Send a real-time message and an email to the

system administrator;
Terminate the program; 1

Figure 6 Function Epilogue Code

3.3: Inconsistency of Address Storage

So far RAD is based on the following assumptions:

0 When a function is called, its stack frame is pushed
into the stack and is not popped from the stack until it
finishes and returns.
When a function call returns, only its stack frame is 0

Popped-

These assumptions are not always true for C pro-
grams. System calls setjmp() and longjmp() [7] allow
users to bypass several functions in the call path to the
current function to directly jump back to the function
executing setjmp(). Users use setjmp() to set a return
location and use longjmp() in a different function to go
back to the return location set by the setjmp() statement. If
between the executions of setimp() and longimp() there
are several nested function calls, then when longjmp() is
executed, the execution goes back to the setimp()
statement directly. Consequently not only the current stack
frame but also all stack frames between these two
functions’ frames are popped from the stack. So the top
return address of RAR and the return address in the
current stack frame do not match in this case. According
to 3.1 and 3.2, if the mismatch occurs, RAD will treat this
as a potential attack and terminate the program.

Because executing Ionimp() will pop more than one
stack frame, we can address this problem by simulating
the above action by popping the return ad-dresses in RAR
accordingly. When detecting that the top return address of
RAR is different from the return address in the current
stack frame, instead of terminating the program, RAD
pops RAR and repeats the comparison. If no match can be
found when RAR is empty, then it means someone is
launching an attack, otherwise the matched return address
is safe to use.

However, this scheme leads to another problem, as
illustrated in Figures 7. For each stack frame, we only list
its return address. a, b, c, d, e, f, and g are return addresses
of functions A, B, C, D, E, F and G. In function A there is
a setjmp() statement. In function F there is a longimp()
statement. Figure 7-(1) shows a particular calling
sequence, and its associated stack and RAR layouts. In
this calling sequence, function G calls function D, which
in turn calls function A. Function A executes setimp() and
then calls function B which in turn calls function A. But
this time function A does not execute setjmp() and then
calls function E. Function E calls function F. In function F,
the longjmp() statement is executed. After longjmp() is
executed, the stack frames of F, E, A, and B are popped.
The new stack layout is shown in Figure 7-(2). When
function A returns, the stack layout is shown in Figure 7-
(3). But using the new method, RAD only pops the return

412

addresses of F, E and A, as shown in Figure 7-(3).
Obviously the two layouts are differently. Will this
inconsistency cause any problem? The answer is No! For
this calling sequence, when function D returns to function
G, the stack layout becomes the one in Figure 7-(4). Then
RAD pops return addresses b, a, and d. So now they
become the same again.

’li k t

Figure 7 Layout inconsistency between RAR and
stack due to the execution of longjmp()

RAR only holds legal return addresses and RAD only
uses RAR to check whether a return address is legal. RAD
never changes or sets the return addresses used in
programs. RAD either terminates the execution of a
program or lets the program continue. So the layouts of
return addresses in RAR and in the stack do not need to be
the same all the time. Besides, RAD guarantees that no
illegal entry is added into RAR,(RAD uses MineZone
RAD and Read-only RAD to achieve this goal.), and
when function call pushes a legal entry into RAR, the
entry is still in RAR when the function whose prologue
pushed the return address into RAR is about to return. So
RAD works correctly. A formal proof of correctness of
RAD is given in [26].

4: Evaluation of RAD

4.1 : Implementation Issues

The code implementing RAD consists of two parts, a
patch to gcc and declarations in hacker/global.c. There
are about 85 lines of C and GNU 80x86 in-lined assembly
code in the patch part that inserts protection code into
function prologues and epilogues and links global.c’s
object file, global.0, with other object files to generate the

final executable file. There are about 90 lines of C and
GNU in-lined assembly code in globa1.c that contains
variables’ and functions’ definitions used in the new
function prologues and epilogues.

The run time address space of a program compiled by
RAD contains two copies of return addresses, one in the
stack and one in RAR. Any attempt to change return
addresses in the stack will be detected by RAD and result
in the termination of the program and the delivery of a
warning message to root. RAR is protected by system call
mprotecto. mprotecto’s default reaction to memory
access violation is a core dump. But this behavior could
be changed. By making a patch to the kernel, RAD can
react to memory access violation the same way as in the
stack case. RAD uses a new system call to tell the kernel
the exact portion of the address space that mprotect () uses
to protect RAR. So when a memory access violation
occurs, the kernel can use this information to determine
whether it should make a core dump (due to a violation
occurring in other mprotected-area) or terminate the
program and send a read-time message to root (due to a
violation occurring in the area used to protect RAR). In
our case the patch to the kernel uses about 70 lines of C
and GNU in-lined assembly code.

When the patched kernel detects an attempt to modify
RAR, it uses system call exec() to execute the program
hackerhacker, which sends a real time message to the
root and terminates the program. System call exec()
requires that its parameters be stored in the user address
space, but now execution is within the kernel. The patched
kernel solves this problem by putting the parameters into
the stack of the user address space before invoking exec(),
so exec()’s parameters will be in the right place when it is
executed and kernel can execute hackerhacker correctly.

4.2: Effectiveness of RAD’S Defense

Aleph One’s exploit code [3] is the template of many
exploit codes used to launch a buffer overflow attack
against a variety of applications. Many exploit codes only
add small modifications to it. So our first step in testing
the effectiveness of RAD is to test whether RAD can
defend Aleph One’s code against the attack of his own
exploit code. The test showed that RAD indeed stops the
attack effectively. Originally, our next step is to find more
exploit codes and then test them against their target
victims with or without the protection of RAD. But for the
following reasons, we chose a different way to evaluate
the effectiveness of RAD. Currently those who attack
return addresses only know that stack return addresses are
their targets. They don’t know that RAD keeps another
copy of each function return address in RAR. So even if
we could show that RAD can successfully detect existing

413

buffer overflow attack codes, we still can not be sure that
RAD can protect return addresses in all cases, because
none of existing attacks know the existence of RAR, let
alone attack it. Therefore, we chose to classify basic
attack patterns, and evaluate RAD’s defense efficacy
based on how well it can handle these basic attack patterns.

Attack pattern 1 is the most common form of buffer
overflow attacks. Aleph One’s code uses this pattern. A
program containing a loop statement that reads input from
outside without performing array bounds checking is a
genetic victim. To launch a pattern 1 attack to change a
return address, attackers must start from a nearby location
of the address and repeat writing toward the return address.
So when the return address is overwritten, the area
between the start point and return address is also modified.
In MineZone RAD, both sides of RAR have a read-only
mine zone to protect it. Any one trying to use pattern I to
change a return address in RAR will touch the mine zone
first, which will result in the termination of the attacked
program. So MineZone RAD can handle pattern 1 attacks
successfully.

If a program satisfies all the conditions listed in 3.2,
which correspond to attack pattern 2, then even with
MineZone RAD, attackers can still successfully hijack the
program under attack, MineZone RAD can only prevent
overflowed writing of RAR from the upper or lower
directions, but cannot prevent direct random writes into
RAR. In Read-only RAD, except in function prologues,
RAR is read-only and in function prologues there is no
any U 0 and loop copy statement, so attackers do not have
any chance LO change RAR. So this RAD protects return
addresses from both attack patterns

4.3: Performance Evaluation

This section describes tests that we use to evaluate the
performance overhead of RAD. OGI’s work [I] provides
a good way to find the upper bound of a function’s
additional performance cost of their scheme, so we adopt
their methods to evaluate the performance overhead of
RAD.

4.3.1: Micro-Benchmark Results

We wrote three C programs to evaluate three kinds of
performance costs that RAD incurs. We use as the penalty
metric the ratio of a function’s additional performance
cost associated with RAD to the function’s original
performance overhead. That is, Penalty = A ‘function’s
additional performance cost associated with RAD + the
function ’s original performance overhead .

Each program has only two functions. Except the main
function, there is another function that increases the value

of a variable by one. We call the function 100,000,000
times and use gettimeofday0 to measure the execution
times required with or without the protection of RAD. All
tests are made on a 133MHz Pentium processor with 32
Mbytes of main memory. In program 1, we call a function,
void inc(), 100,000,000 times to increment a global
variable 100,000,000 times. The function has no
arguments and no return value. In program 2, we call a
function, void inc(int *), 100,000,OOO times to increment
a local variable of main() 100,000,000 times. The function
has no return value, but has one argument that is the
address of the local variable. In program 3, the function
used is int inc(int) which increments one to one of its
local variables. We call the function 1oO,OOO,OOO times to
measure RAD’s performance penalty. The function has a
return value and an argument. Table 1 and Table 2 show
the micro-benchmark results of MineZone RAD and
Read-only RAD. All measured numbers are in terms of ps.

Because the overhead of a function call is fixed and
the overhead of the additional instructions added by RAD
is also fixed, the more computation a function performs,
the less RAD’s penalty is in term of relative percentages.
In MineZone RAD, the additional over-head comes from
the cost to store and manage return addresses in RAR.
There are about 20 lines of assembly instructions in the
function prologue and epilogue to perform the protection
operation. In Read-only RAD, not only the above
protection operation needs be performed, but also two
mprotect() system calls must be executed to protect RAR,
which introduces a serious performance penalty. This is
the reason why the performance of Read-only RAD is
much higher compared to MineZone RAR.

4.3.2: Macro-Benchmark Results

In subsection 4.3.1, we measure performance penal-
ties on functions containing only one statement. They
provide an upper bound on RAD’s relative performance
penalty. The real performance penalty of executing a
RAD-protected program should be the sum of the
penalties of all functions in the program. In this subsection
we measure the performance penalties of two significant
Unix applications, ctags and gcc. ctags is a UNIX
command that generates an index file for several
languages, including C . The version we used is ctags-3.2.
Totally there are 9,488 lines of source code. The input
program that gcc and RAD-protected gcc compile is a
dictionary proxy server with 4500 lines of source code.
For each program, we measured the execution times of the
original program and the RAD-protected version. From
these measurements, we calculated the performance
penalty.

414

1 Function Prototype I Original run-time I MineZone RAD run-time 1 Penalty I
Void inc()

Void inc(int *)
Int inc(int)

12,814,378 30,897,126 1.41
17,334,197 35,418,721 1.043
18,089,58 1 36,924,768 1.04 1

Table 1 Micro-benchmark results of MineZone RAD

Void inc()
IFunction Prototype loriginal run-time]Read-only RAD run-time 1 Penalty I

12,814,378 2,696,119,743 I 209.40
Void inc(int *) 17,334,197 2,628,705,475 1 150.65
lint inc(int) 18,089,58 1 2,651,345,171 I 145.57 I

Program size
11991 lines

Table 4 Macro-benchmark results of gcc

Program tested User time System time Real time
Original ctags 0.57 0.05 0.62
MineZone RAD-protected ctags 0.58 0.05 0.63
Read-only RAD-protected ctags 8.16 19.17 27.32

The measurement results are shown in Tables 3 and 4,
and are all in terms of seconds. As the additional cost of a
RAD-protected program comes from the additional
instructions added to function prologues and epilogues. So
the more computation a program’s functions perform, the
less performance penalty its RAD-enhanced version
experiences. gcc’s functions have more computation than
ctags’s so the penalty of Read-only RAD-protected gcc,
18x, is smaller than the penalty of Read-only RAD-
protected ctags, 43x. But the number of functions
executed also influences the relative performance penalty.
RAD introduces a fixed extra performance cost for each
function protected by it, so the more functions executed,
the more additional cost is added. gcc has more functions
executed than ctags does, so the penalty of MineZone
RAD-protected gcc,0.3x, is larger than the penalty of
MineZone RAD-protected ctags, 0.02~.

4500 lines loriginal gcc I 3.53 I 0.19

5: Related Work

3.72

Crispin Cowan and Calton Pu et. al. [I] has developed
a gcc patch StackGuard that protects return addresses
from being modified to point to the injected code without
the need to modify the source code. There are 3 variants

]Mine Zone RAD-protected gcc I 4.67 I 0.2

of StackGuard, Canary version, MemGuard Register, and
MemGuard VM.

The Canary version of StackGuard puts a canary word
before every return address in the stack. By checking the
integrity of the canary before a function returns, this
version can defeat most of pattern 1 attacks with little
performance penalty. But if attackers can correctly guess
the canary value, this method will not work. Besides under
certain conditions attackers could overwrite the pre-
computed canary values with their own values to turn off
the protection [19]. In addition, due to alignment
requirement, it is possible to overwrite a return address
but skip over the canary word. The Canary version can’t
survive pattern 2 attacks. Even though MineZone RAD
also can’t survive these attacks either, it is more difficult
to hijack the program protected by MineZone RAD,
because attackers must change both the return addresses in
stack and in RAR. The biggest drawback of the Canary
version is that i t changes the layout of stack frames,
because an additional canary is inserted into every stack
frame. This change will result in unexpected behavior in
some programs. According to OGI [21], “the major
compatibility limitation of StackGuard is that i t changes
the format of an activation record on the stack. Programs

4.87

415

IRead-Only RAD-protected gcc I 20.46 I 50.43 70.89

that are introspective with respect to the format of data on
the stack will fail.”

Both MemGuard versions try to make the memory
areas holding return addresses as read-only after they have
been saved into those areas. MemGuard Register uses the
4 Pentium debug registers to monitor any write action into
the return addresses in the top-most 4 stack frames.
MemGuard VM achieves this by setting the stack as read-
only. By installing a trap handler, they catch writes to
protected pages, and emulate the writes to non-protected
words on protected pages. These two versions are more
secure than the canary version. But not every processor
architecture supports debug registers. As MemGuard
Register has used all debug registers, so programs
compiled by it have no free debug register to use. Finally
if the total size of the top-most 4 stack frames is less than
one page and there are other stack frames in the topmost
page that MemGuard Register does not set as read-only to
reduce the performance penalty, then return addresses in
these stack frames are without protection and vulnerable
to return address attacks. The MemGuard VM version
exhibits a very serious performance penalty due to
frequent memory references to a read-only area.

Because system damage can only be inflicted via
system calls, a running process’s system call patterns are
good targets to monitor to detect intrusions. R. Sekar et al.
[24] defined the behavior patterns of process in terms of
sequences of system calls and their arguments. Before a
program is executed, these patterns are manually written
into a specification with a special language, called
Regular Expression for Events (WE) . So correctly using
ERR to accurately describe the program behavior is
essential for this method to work. Wenke Lee et al [25]
used a data mining approach on audit data to identify
legitimate pattern of resource usage. So before the
patterns are established a large amount of data must be
collected for the intrusion detection system to learn.

Both strategies’ effectiveness relies on the existence of
correct system call patterns. So whenever a program is to
be executed, not only the executable file but also the
corresponding system call pattern must be available.
Moreover, any changes to the protected applications may
entail a corresponding change on the associated patterns.

Alexandre Snarskii has written a patch to libc to make
FreeBSD un-exploitable with standard stack overflow
attacks [151. Functions containing statements that get
inputs for buffer arrays from outside without making
bounds checking are vulnerable to buffer overflow attacks.
If a library function has this vulnerability, all programs
using this function are vulnerable to buffer overflow
attacks also. Strcpy(), strcat(), and sprintf() are such
library functions. Snarskii made a patch to these
dangerous library functions to check the stack integrity
before they return to solve this problem. Because the
patch is only for C library functions, vulnerabilities in

user-defined functions still exist and continue to threaten
the security of computer systems.

In an extension to the GNU C compiler, Richard Jones
and Paul Kelly have developed a new method to enforce
array bounds and pointers checking in the C language [161.
They make the check without changing the representation
of pointers, so code with array bound checking is
compatible with the unchecked version. In their approach,
every pointer value is valid for only one memory region
that could be a single variable, an array, a single structure,
an array of structure, or a single unit of memory allocated
by malloc(). For every pointer expression, they define a
unique base pointer. Then by checking whether the
memory region referenced by the result of the pointer
expression is the same region as the one referenced by the
base pointer, they enforce bounds checking. This method
solves the buffer overflow attack problem, including those
attacks targeting at function pointers. But the performance
penalties are substantial. For a matrix multiplication, there
is a 30x slowdown. Moreover, in their implementation,
under certain conditions array bounds checking is disabled.

Injecting code into the stack and changing the return
address to point to it is the most common form of BO
attacks, so making the stack non-executable can
effectively defeat the BO attack. Solar Designer [14], an
alias, has written a patch for Linux kernel to make the
stack non-executable. This patch has a very small
performance cost. Besides, since it doesn’t need to
recompile the source code, users don’t need to find the
source code to use this new kernel. But this method only
works for traditional and standard stack attacks. Exploit
code injected into data segment still can hijack the
attacked program.

Linux signal handler returns need an executable stack.
Nested function calls and trampoline functions also need
an executable stack to work properly. Functional
languages, e.g. LISP, also need an executable stack. In
order to solve the above problems, the patch needs to
temporarily set the stack as executable when the above
events occur. But this also creates a window of
vulnerability for attackers to launch a buffer overflow
attack.

6: Conclusion

This paper describes the design, implementation, and
evaluation of a compiler solution called RAD to the
buffer overflow attack problem. RAD is simple and
effective, and does not suffer from the stack frame
compatibility problem associated with previous
approaches, In addition, RAD can correctly handle
network application programs that use setjmp() and
longimp() calls. We have also presented a taxonomy of
memory overwrite attack patterns, and show that the less

416

secure version of RAD, MineZone RAD, can survive
attack pattern 1 , while the more secure version, Read-
Only RAD, can survive all attack patterns at the expense
of much higher performance penalty. Binary code
generated by RAD is compatible with existing libraries
and other object files. When RAD is used to protect a
program, there is no need to modify the source code.
Finally RAD will send a real-time message and an email
to the system administrator when it detects an attack.
From the prototype implementation and performance
measurements we believe RAD provides an effective way
to protect computer systems against buffer overflow
attacks.

Acknowledgment
This research is supported by NSF MIP-9710622, NSF

NSF ACI-9907485, USENIX student research grants, as
well as a contract from Siemens.

IRI-9711635, NSF EIA-98 18342, NSF ANI-98 14934,

Reference

[I] Crispin Cowan, Calton Pu, et.al. , “StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow
Attacks,” Proceedings of the 7th USENIX Security Conference,
San Antonio, Texas, USA, 1998.

[2] Simon Garfinkel and Gene Spafford, Practical UNlX &
Internet Security, O’Reilly, 1996.

[3] Aleph One, “Smashing The Stack For Fun and Profit,”
http://www.fc.net/phrack/files/p49/p49- 14.

[4] Nathan P. Smith, “Stack Smashing Vulnerabilities in the
UNIX Operating System,”
http://reali ty.sgi.com/natdmachines/securi tylstack-smashing/.

[5] CERT, “Multiple Buffer Overflows in Kerberos
Authenticated Services,” http://www.cert.org/advisories/.

[6] E. Spafford, “The Internet Worm Program: Analysis,”
Computer Communication Review, 1989.

[7] Stevens, W. Richard, Advanced Programming in the UNlX
Environment, Addison-Wesley, 1992.

[8] Aleph One, “Question on Buffer Overflow,”
http://www.securityfocus.com/.

[9] Andrew S. Tanenbaum, Modern Operating System, Prentice
Hall, 1992.

[IO] Michael Beck, Harald Bohme, Mirko Dziadzka, Ulrich
Kunitz, Robert Magnus, Harold and Bohme, Linux Kernel
Internals, Addison-Wesley, 1996.

[111 Remy Card, Eric Dumas, and Franck Mevel, The Linux
Kernel Book, Wiley, 1998.

[I21 Mudge, “How to Write Buffer Overflows,”
http://l Opht.com/advisories/bufero.html.

1131 OpenBSD, “OpenBSD Security,”
http://www.openbsd.org/security.html.

[141 Solar Designer, “Non-Executable User Stack,”
http://www.openwall.com/.

[151 Alexandre Snarskii, “FreeBSD Insecure Library Function’s
Stack Integrity Check,” ftp://ftp.lucky.net/pub/unix/local/libc-
letter, 1997.

[I61 Richard W M Jones and Paul H J Kelly, “Backwards-
compatible Bounds Checking for arrays and pointers in C

aIa.doc.ic.ac.uk/-phj WBoundsCheckinig. html.
programs, ’ ’ http://www-

[I71 Evan Thomas, “Attack Class: Buffer Overflow,’’
h ttp://students.ou.eduN/Amos.P.Waterland-
1 /wellspring/buffer-overflow.html.

[181 Crispin Cowan, ”Buffer Overflow and OS/390,”
http://geek-girl.com/bugtraq/ 1999- 1 /048 1 .html.

[191 Tim Newsham, “StackGuard: Automatic Protection from
Stack-smashing Attacks,” http://www.securityfocus.com/.

[20] Matt Conover, “WOOWOO on Heap Overflows,”
http://www.w00w00.org/articles.html.

[21] Crispin Cowan et. al., “StackGuard Compilser: a gcc
Enhancement,’ ’ http://www.cse.ogi.edu/DISC/projects/immunix/
StackGuard/compiler.html.

[22] Ham Swap-Linux, “Linux Superprobe vulnerability,”
http://www.insecure.org/sploits/linux.SuperProbe.html.

[23] Steve Summit, “Pointers to Functions,”
http://gsu.linux.org.tr/doc/C/c_faq/-scs/cclass/int/sx 1O.html.

[24] R. Sekar and P. Uppuluri, “Synthesizing Fast Intrusion
DetectionPrevention Systems from High-Level
Specifications,” USENIX Security Symposium, 1999

[25] Wenke Lee and Sal Stolfo, ‘\ Data Mining approaches for
Intrusion Detection,” Proceedings of the Seventh USENIX
security Symposium (SECURITY ’98), San Antonio, TX,
January 1998.

[26] Fu-Hau Hsu, “The Principle, Attack Pattems and Defense
Methods of Buffer Overflow Attacks,” ECSL-TR-87, Computer
Science Department, SUNY at Stony Brook, October 2000.

417

http://www.fc.net/phrack/files/p49/p49
http://reali
http://www.cert.org/advisories
http://www.securityfocus.com
http://l
http://www.openbsd.org/security.html
http://www.openwall.com
ftp://ftp.lucky.net/pub/unix/local/libc
http://www
http://geek-girl.com/bugtraq
http://www.securityfocus.com
http://www.w00w00.org/articles.html
http://www.cse.ogi.edu/DISC/projects/immunix
http://www.insecure.org/sploits/linux.SuperProbe.html
http://gsu.linux.org.tr/doc/C/c_faq/-scs/cclass/int/sx

