
By Jake Edge
October 9, 2013

Linux Security Summit

User: Password: Log in |

Subscribe | Register

Kernel address space layout
randomization

Address-space layout randomization (ASLR) is a
well-known technique to make exploits harder
by placing various objects at random, rather
than fixed, addresses. Linux has long had ASLR
for user-space programs, but Kees Cook would

like to see it applied to the kernel itself as well. He outlined the reasons
why, along with how his patches work, in a Linux Security Summit talk. We
looked at Cook's patches back in April, but things have changed since then;
the code was based on the original proposal from Dan Rosenberg back in
2011.

Attacks

There is a classic structure to many attacks against the
kernel, Cook said. An attacker needs to find a bug either
by inspecting kernel code, noticing something in the
patch stream, or following CVEs. The attacker can then
use that bug to insert malicious code into the kernel
address space by various means and redirect the kernel's
execution to that that code. One of the easiest ways to get
root privileges is to execute two simple functions as
follows:

 commit_creds(prepare_creds());

The existence of those function has made things "infinitely easier for an
attacker", he said. Once the malicious code has been run, the exploit will
then clean up after itself. For an example, he pointed to Rosenberg's RDS
protocol local privilege escalation exploit.

These kinds of attacks rely on knowing where symbols of interest live in the
kernel's address space. Those locations change between kernel versions
and distribution builds, but are known (or can be figured out) for a

Content ▶ Edition ▶

Kernel address space layout randomization [... https://lwn.net/Articles/569635/

1 of 6 12/10/19, 7:10 PM

particular kernel. ASLR disrupts that process and adds another layer of
difficulty to an attack.

ASLR in user space randomizes the location of various parts of an
executable: stack, mmap region, heap, and the program text itself. Attacks
have to rely on information leaks to get around ASLR. By exploiting some
other bug (the leak), the attack can find where the code of interest has been
loaded.

Randomizing the kernel's location

Cook's kernel ASLR (KASLR) currently only randomizes where the kernel
code (i.e. text) is placed at boot time. KASLR "has to start somewhere", he
said. In the future, randomizing additional regions is possible as well.

There are a number of benefits to KASLR. One side effect has been moving
the interrupt descriptor table (IDT) away from the rest of the kernel to a
location in read-only memory. The unprivileged SIDT instruction can be used
to get the location of the IDT, which could formerly have been used to figure
out where the kernel code was located. Now it can't be used that way
because the IDT is elsewhere, but it is also protected from overwrite
because it is read-only.

ASLR is a "statistical defense", because brute force methods can generally
be used to overcome it. If there are 1000 locations where the item of
interest could reside, brute force will find it once and fail 999 times. In user
space, that failure will lead to a crash of the program, but that may not
raise the kind of red flags that crashing 999 machines would. The latter is
the likely outcome from a wrong brute force guess against KASLR.

On the other hand, KASLR is not compatible with hibernation (i.e. suspend
to disk). That is a solvable problem, Cook said, but is not interesting to him.
The amount of space available for the kernel text to move around in is
another problem. The code must be 2M aligned because of page table
restrictions, and the space available is 2G. In a "perfect world", that would
give 1024 slots for the location. In the real world, it turns out to be a fair
amount less.

There are also some steps that need to be taken to protect against
information leaks that can be used to determine where the kernel was
loaded. The kptr_restrict sysctl should be enabled so that kernel pointers are
not leaked to user space. Similarly, dmesg_restrict should be used as dmesg
often has addresses or other information that can be used. Also, log files
(like /var/log/messages) should have permissions for root-only access.

The last source of leaks he mentioned is conceptually easy to fix, but has
run into resistance from the network subsystem maintainers. The INET_DIAG

Kernel address space layout randomization [... https://lwn.net/Articles/569635/

2 of 6 12/10/19, 7:10 PM

socket API uses the address of a kernel object as a handle. That address is
opaque to user space, but it is a real kernel pointer, so it can be used to
determine the kernel location. Changing it to some obfuscated value would
fix the problem, but the network maintainers are not willing to do so, he
said.

In a completely unconfined system, especially one with local untrusted
users, KASLR is not going to be very useful, Cook said. But, on systems that
use containers or have heavily contained processes, KASLR can help. For
example, the renderer process in the Chrome browser is contained using
the seccomp-BPF sandbox, which restricts an exploit to the point where it
shouldn't be able to get the information needed. It is also useful to protect
against attacks via remote services since there are "many fewer leaks"
available remotely.

Implementation

KASLR has been added to Chrome OS, Cook said. It is in the Git tree for the
distribution's kernel and will be rolled out in the stable release soon. He has
a reputation for "bringing disruptive security changes to people who did not
necessarily want them", he said with a smile, but KASLR was actually the
"least problematic" of his proposed changes. Part of the reason for that is
that "several other very smart people" have helped, including Rosenberg,
other Google developers, and folks on the kernel mailing list.

Cook's patches change the boot process so that it determines the lowest
safe address where the kernel could be placed. It then walks the e820
regions counting kernel-sized slots. From those, it chooses a slot randomly
using the best random number source available. Depending on the system,
that would be from the RDRAND instruction, the low bits from a RDTSC (time
stamp counter), or bits from the timer I/O ports. After that, it decompresses
the kernel, handles the relocation, and starts the kernel.

The patches are currently only for 64-bit x86, though Cook plans to look at
ARM next. He knows a "lot less" about ARM, though, so he is hoping that he
can "trick someone into helping me", he said.

The current layout of the kernel's virtual address space only leaves 512M
for the kernel code—and 1.5G for modules. Since there is no need for that
much module space, his patches reduce that to 1G, leaving 1G for the
kernel, thus 512 possible slots (as it needs to be 2M aligned). The number
of slots may increase when the modules' location is added to KASLR.

A demonstration of three virtual machines, with
one running a "stock" kernel and two running the
KASLR code, was up next. Looking at /proc/kallsyms
and /sys/kernel/debug/kernel_page_tables on each

Kernel address space layout randomization [... https://lwn.net/Articles/569635/

3 of 6 12/10/19, 7:10 PM

showed different addresses. Cook said that he was
unable to find a measurable performance impact
from KASLR.

The difference in addresses makes panics harder to decode, so the offset of
the slot used to locate the kernel has been added to that output. He
emphasized that information leaks are going to be more of a problem for
KASLR-enabled systems, noting that it is somewhat similar to Secure Boot
now making a distinction between root and kernel ring 0. For the most part,
developers didn't care about kernel information leaks, but that needs to
change.

There are some simple steps developers can take to avoid leaking kernel
addresses, he said. Using the "%pK" format for printing addresses will show
regular users 0, while root still sees the real address (if kptr_restrict is
enabled, otherwise everyone sees the real addresses). The contents of
dmesg need to be protected using dmesg_restrict and the kernel should not be
using addresses as handles. All of those things will make KASLR an effective
technique for thwarting exploits—at least in restricted environments.

[I would like to thank LWN subscribers for travel assistance to New Orleans
for LSS.]

(Log in to post comments)

Kernel address space layout randomization
Posted Oct 10, 2013 17:03 UTC (Thu) by kees (subscriber, #27264) [Link]

Very minor correction: KASLR is working on both 32-bit and 64-bit x86
(with 256 and 512 possible random positions respectively), not just 64-bit. I
do still want to make this work on ARM, though. :)

Reply to this comment

Kernel address space layout randomization
Posted Oct 13, 2013 17:26 UTC (Sun) by rwmj (guest, #5474) [Link]

I understand that huge pages are 2M, but why does that mean the kernel
can only go at 2M boundaries? Isn't it possible to have ELF-style symbol
relocations so the kernel can be moved to smaller offsets within the page
(eg. the kernel would start at 2M page boundary + 1 byte)?

Anyway, here's hoping that once this is implemented, Ubuntu will make the
vmlinuz files public readable again (and thus gain the much bigger security
benefits of using libguestfs and VM sandboxes for user processes).

Kernel address space layout randomization [... https://lwn.net/Articles/569635/

4 of 6 12/10/19, 7:10 PM

Reply to this comment

Kernel address space layout randomization
Posted Oct 17, 2013 22:08 UTC (Thu) by heijo (guest, #88363) [Link]

Does Ubuntu somehow randomly alter the vmlinuz files on disk?

If not, what's the point of making them unreadable, since the attacker
can, very easily and automatically, determine that the distribution is
Ubuntu, and download the files from their servers?

Reply to this comment

Kernel address space layout randomization
Posted Oct 18, 2013 0:07 UTC (Fri) by spender (guest, #23067) [Link]

They don't and of course you can absolutely automatically do what you
just mentioned.

As for why:
http://lmgtfy.com/?q=cargo+cult+security

-Brad

Reply to this comment

Kernel address space layout randomization
Posted Oct 18, 2013 6:21 UTC (Fri) by rwmj (guest, #5474) [Link]

There's no security added by chmod go-r those files. However there is a
lot of pain caused by it.

Reply to this comment

Kernel address space layout randomization
Posted Jan 24, 2014 15:59 UTC (Fri) by deepfire (guest, #26138)
[Link]

> There's no security added by chmod go-r those files.
> However there is a lot of pain caused by it.

Really?

Kernel address space layout randomization [... https://lwn.net/Articles/569635/

5 of 6 12/10/19, 7:10 PM

Laying bare your code/data layouts for the local would-be-root's
perusal is nothing?

OTOH, if your logic goes along the lines of "there's so many other
places you can get that information from, it just doesn't matter" -- I
could agree.

Reply to this comment

Kernel address space layout randomization
Posted Oct 14, 2013 13:03 UTC (Mon) by spender (guest, #23067) [Link]

commit_creds(prepare_creds()) won't get you anything. The correct
technique (which I first published) is
commit_creds(prepare_kernel_cred(NULL))

Since it's relevant: http://forums.grsecurity.net/viewtopic.php?f=7&t=3367

I fully expect the warnings to be completely ignored and KASLR advertised
as important security in future distro kernels, despite being completely
useless.

-Brad

Reply to this comment

Copyright © 2013, Eklektix, Inc.
This article may be redistributed under the terms of the Creative Commons CC BY-SA 4.0 license

Comments and public postings are copyrighted by their creators.
Linux is a registered trademark of Linus Torvalds

Kernel address space layout randomization [... https://lwn.net/Articles/569635/

6 of 6 12/10/19, 7:10 PM

