
Overview Over Attack Vectors and
Countermeasures for Buffer Overflows

Valentin Brandl
Faculity of Computer Science and Mathematics

OTH Regensburg
Regensburg, Germany

valentin.brandl@st.oth-regensburg.de
MatrNr. 3220018

Abstract—TODO
Index Terms—Buffer Overflow, Software Security

I. MOTIVATION

When the first programming languages were designed,
memory had to be managed manually to make the best use
of slow hardware. This opened the door for many kinds of
programming errors. Memory can be deallocated more than
once (double-free), the programm could read or write out
of bounds of a buffer (information leaks, buffer overflows
(BOFs)). Languages that are affected by this are e.g. C,
C++ and Fortran. These languages are still used in critical
parts of the worlds infrastructure, either because they allow
to implement really performant programms, because they
power legacy systems or for portability reasons. Scientists
and software engineers have proposed lots of solutions to this
problem over the years and this paper aims to compare and
give an overview about those.

Reading out of bounds can result in an information leak
and is less critical than BOFs in most cases, but there
are exceptions, e.g. the Heartbleed bug in OpenSSL which
allowed dumping secret keys from memory. Out of bounds
writes are almost always critical and result in code execution
vulnerabilities or at least application crashes.

In 2018, 14% (2368 out of 16556) [1] of all software vul-
nerabilities that have a CVE assigned, were overflow related.
This shows that, even if this type of bug is very old and well
known, it’s still relevant today.

II. BACKGROUND

A. Technical Details

Exploitation of BOF vulnerabilities almost always works
by overriding the return address in the current stack frame, so
when the RET instruction is executed, an attacker controlled
address is moved into the instruction pointer register and the
code pointed to by this address is executed. Other ways include
overriding addresses in the procedure linkage table (PLT) of
a binary so that, if a linked function is called, an attacker
controlled function is called instead, or (in C++) overriding the
vtable where the pointers to an object’s methods are stored.

A simple vulnerable programm might look like this:

int main(int argc, char **argv) {
char buf[50];
for (size_t i = 0; i < strlen(argv[1]); i++) {
buf[i] = argv[1][i];

}
return 0;

}

A successful exploit would place the payload in the memory
by supplying it as an argument to the programm and eventually
overwrite the return address by providing an input > 50 and
therefore writing out of bounds. When the return instruction
is executed, and jumps into the payload, the attacker’s code
is executed. This works due to the way, how function calls
on CPUs work. The stack frame of the current function lies
between the two pointers base pointer (BP) and stack pointer
(SP) as shown in 1. When a function is called, the value of
the BP, SP and instruction pointer (IP) is pushed to the stack
(Fig. 2) and the IP is set to the address of the called function.
When the function returns, the old IP is restored from the
stack and the execution continues from where the function
was called. If an overflow overwrites the old IP (Fig. 3), the
execution continues in attacker controlled code.

data1 0xFE <- SP

data1 0xFF <- BP

Fig. 1: Stack layout before function call

This is only one of several types and exploitation techniques
but the general idea stays the same: ovewrite the return address
or some kind of function pointer (e.g. in vtables or the PLT)
and once that function is called, the execution flow is hijacked
and the attacker can execute arbitiary code.

data2 0xF9 <- SP

data2 0xFA <- BP

[old IP] 0xFB

*0xFE 0xFC

*0xFF 0xFD

data1 0xFE

data1 0xFF

Fig. 2: Stack layout after function call

data2 0xF9 <- SP

[payload] 0xFA <- BP

[controlled IP] 0xFB

*0xFE 0xFC

*0xFF 0xFD

data1 0xFE

data1 0xFF

Fig. 3: Stack layout after overflow

B. Implications

III. CONCEPT AND METHODS

A. Methods

This paper describes several techniques that have been
proposed to fix the problems introduced by BOFs. The per-
formance impact, effectiveness (e.g. did the technique actually
prevent exploitation of BOFs?) and how realistic it is for
developers to use the technique in real-world code (e.g. is
incremental introduction into an existing codebase possible).
In the end, there is a discussion about the current state.

B. Runtime Bounds Checks

The easiest and maybe single most effective method to
prevent BOFs is to check, if a write or read operation is out
of bounds. This requires storing the size of a buffer together
with the pointer to the buffer and check for each read or write
in the buffer, if it is in bounds at runtime. Still almost any
language that comes with a runtime, uses runtime checking.

C. Prevent/Detect Overriding Return Address

Since most traditional BOF exploits work by overriding the
return address in the current stack frame, preventing or at least
detecting this, can be quite effective without much overhead
at runtime. Chiueh, Tzi-cker and Hsu, Fu-Hau describe a
technique that stores a redudnant copy of the return address in
a secure memory area that is guarded by read-only memory,

so it cannot be overwritten by overflows. When returning,
the copy of the return address is compared to the one in
the current stack frame and only, if it matches, the RET
instruction is actually executed [2]. While this is effective
against return oriented programming (ROP) based exploits, it
does not protect against vtable overrides.

An older technique from 1998 proposes to put a canary word
between the data of a stack frame and the return address [3].
When returning, the canary is checked, if it is still intact and if
not, a BOF occurred. This technique is used in major operating
systems but can be defeted, if there is an information leak that
leaks the cannary to the attacker. The attacker is then able to
construct a payload, that keeps the canary intact.

D. Restricting Language Features to a Secure Subset

E. Static Analysis

F. Type System Solutions

Condit, Jeremy and Harren, Matthew and Anderson,
Zachary and Gay, David and Necula, George C. propose an
extension to the C type system that extends it with dependent
types. These types have an associated value, e.g. a pointer type
can have the buffer size associated to it. This prevents indexing
into a buffer with out-of-bounds values. This extension is a
superset of C so any valid C code can be compiled using the
extension and the codebase is improved incrementally. If the
type extension is advanced enough, the additional information
might form the base for a formal verification.

G. Address Space Layout Randomization

Address space layout randomization (ASLR) aims to pre-
vent exploitatoin of BOFs by placing code at random locations
in memory. That way, it is not trivial to set the return
address to point to the payload in memory. This is effective
against generic exploits but it is still posible to exploit BOF
vulnerabilities in combination with information leaks or other
techniques like heap spraying. Also on 32 bit systems, the
address space is small enough to try a brute-force attempt
until the payload in memory is hit.

H. wˆx Memory

wˆx (also known as non-eXecutable (NX)) makes memory
either writable or executable. That way, an attacker cannot
place arbitiary payloads in memory. There are still techniques
to exploit this by reusing existing executable code. The ret-
to-libc exploiting technique uses existing calls to the libc
with attacker controlled parameters, e.g. if the programm uses
the system command, the attacker can plant /bin/sh as
parameter on the stack, followed by the address of system
and get a shell on the system. ROP (a superset of ret-to-libc
exploits) uses so called ROP gadgets, combinations of memory
modifying instructions followed by the ret instruction to build
instruction chains, that execute the desired shellcode. This is
done by placing the desired return addresses in the right order
on the stack and reuses the existing code to circumvent the
wˆx protection.

IV. DISCUSSION

A. Ineffective or Inefficient

1) ASLR: ASLR has been really effective and wildly
used in production. It is included in most major operating
systems [5]. Some even use kernel ASLR [6]. Since this
mechanism is active at runtime, it does not require any changes
in the code itself, the programm only has to be compiled as a
position-independent executable (PIE).

2) wˆx: With the rise of ROP techniques, wˆx protection has
been shown to be ineffective. It makes vulnerabilities harder
to exploit but does not prevent anything.

3) Runtime Bounds Checks: Checking for overflows at
runtime is very effective but can have a huge performance
impact so it is not feasible in every case. It also comes
with other footguns. There might be integer overflows when
calculating the bounts which might introduce other problems.

Methods that have been shown to be ineffective (e.g. can
be circumvented easily) or inefficient (to much runtime over-
head). . .

B. State of the Art

What techniques are currently used?

C. Outlook

V. CONCLUSION

While there are many techniques, that protect against differ-
ent types of BOFs, none of them is effctive in every situation.
Maybe we’ve come to a point where we have to stop using
memory unsafe languages where it is not inevitable. There are
many modern programming languages, that aim for the same
problem space as C, C++ or Fortran but without the issues
comming/stemming from these languages. If it is feasible to
use a garbage collector, Go might work just fine. If real-
time properties are required, Rust could be the way to go,
without any language runtime and with deterministic memory
management. For any other problem, almost any other memory
safe language is better than using unsafe C.

VI. SOURCES (DUMMY SECTION FOR DEADLINE)

• RAD: A Compile-Time Solution to Buffer Overflow At-
tacks [2] (might not protect against e.g. vtable overrides,
PLT address changes, . . .)

• Dependent types for low-level programming [4]
• StackGuard: Automatic Adaptive Detection and Preven-

tion of Buffer-Overflow Attachs [3] (ineffective in com-
bination with information leaks)

• Type-Assisted Dynamic Buffer Overflow Detection [7]
• On the Effectiveness of NX, SSP, RenewSSP, and ASLR

against Stack Buffer Overflows [8]
• What Do We Know About Buffer Overflow Detection?:

A Survey on Techniques to Detect A Persistent Vulnera-
bility [9]

• Survey of Attacks and Defenses on Stack-based Buffer
Overflow Vulnerability [10]

• Beyond stack smashing: recent advances in exploiting
buffer overruns [11]

• Runtime countermeasures for code injection attacks
against C and C++ programs [12]

REFERENCES

[1] MITRE. (2018). Security Vulnerabilities Published In
2018(Overflow), [Online]. Available: https : / / www .
cvedetails . com/vulnerability - list /year- 2018 /opov- 1 /
overflow.html (visited on 11/10/2019).

[2] Chiueh, Tzi-cker and Hsu, Fu-Hau, “RAD: A Compile-
Time Solution to Buffer Overflow Attacks,” in 21st In-
ternational Conference on Distributed Computing Sys-
tems, 2001.

[3] Cowan, Crispan and Po, Calton and Maier, Dave and
Walpole, Jonathan and Bakke, Peat and Beattie, Steve
and Grier, Aaron and Wagle, Perru and Yhang, Qian,
“StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-Overflow Attacks,” in 7th USENIX
Security Symposium, 1998.

[4] Condit, Jeremy and Harren, Matthew and Anderson,
Zachary and Gay, David and Necula, George C., “De-
pendent Types for Low-Level Programming,” in Pro-
gramming Languages and Systems, 2007.

[5] Konstantin Belousov. (2019). Implement Address Space
Layout Randomization (ASLR), [Online]. Available:
https://svnweb.freebsd.org/base?view=revision%5C&
revision=r343964 (visited on 12/10/2019).

[6] Jake Edge. (2013). Kernel address space layout random-
ization, [Online]. Available: https : / / lwn .net /Articles /
569635/ (visited on 12/10/2019).

[7] Lhee, Kyung-suk and Chapin, Steve J., “Type-Assisted
Dynamic Buffer Overflow Detection,” in 11th USENIX
Security Symposium, 2002.

[8] H. M. Gisbert and I. Ripoll, “On the Effectiveness of
NX, SSP, RenewSSP, and ASLR against Stack Buffer
Overflows,” in IEEE 13th International Symposium on
Network Computing and Applications (ISNCA), 2014.

[9] Chaim, Marcos and Santos, Daniel and Cruzes, Daniela,
“What Do We Know About Buffer Overflow Detec-
tion?: A Survey on Techniques to Detect A Persistent
Vulnerability,” in International Journal of Systems and
Software Security and Protection (IJSSSP), 2018.

[10] Wang, Wei, “Survey of Attacks and Defenses on Stack-
based Buffer Overflow Vulnerability,” in 7th Interna-
tional Conference on Education, Management, Informa-
tion and Computer Science (ICEMC 2017), 2017.

[11] J. Pincus and B. Baker, “Beyond stack smashing: recent
advances in exploiting buffer overruns,” IEEE Security
& Privacy, vol. 2, no. 4, 2004.

[12] Younan, Yves and Joosen, Wouter and Piessens, Frank,
“Runtime countermeasures for code injection attacks
against C and C++ programs,” ACM Computing Surveys
(CSUR), vol. 44, no. 3, 2012.

https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://www.cvedetails.com/vulnerability-list/year-2018/opov-1/overflow.html
https://svnweb.freebsd.org/base?view=revision%5C&revision=r343964
https://svnweb.freebsd.org/base?view=revision%5C&revision=r343964
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/

	Motivation
	Background
	Technical Details
	Implications

	Concept and Methods
	Methods
	Runtime Bounds Checks
	Prevent/Detect Overriding Return Address
	Restricting Language Features to a Secure Subset
	Static Analysis
	Type System Solutions
	Address Space Layout Randomization
	w^x Memory

	Discussion
	Ineffective or Inefficient
	ASLR
	w^x
	Runtime Bounds Checks

	State of the Art
	Outlook

	Conclusion
	Sources (Dummy Section for Deadline)

