
Paper Title *TODO edit*
1st Given Valentin Brandl

Faculity of Computer Science and Mathematics
OTH Regensburg

Regensburg, Germany
valentin.brandl@st.oth-regensburg.de

MatrNr. 3220018

Abstract—TODO
Index Terms—Buffer Overflow, Software Security

I. MOTIVATION

When the first programming languages were designed,
memory had to be managed manually to make the best use
of slow hardware. This opened the door for many kinds of
programming errors. Memory can be deallocated more than
once (double-free), the programm could read or write out of
bounds of a buffer (information leaks, buffer overflows). Lan-
guages that are affected by this are e.g. C, C++ and Fortran.
These languages are still used in critical parts of the worlds
infrastructure, either because they allow to implement really
performant programms, because they power legacy systems or
for portability reasons. Scientists and software engineers have
proposed lots of solutions to this problem over the years and
this paper aims to compare and give an overview about those.

Reading out of bounds can result in an information leak and
is less critical than buffer overflows in most cases, but there
are exceptions, e.g. the Heartbleed bug in OpenSSL which
allowed dumping secret keys from memory. Out of bounds
writes are almost always critical and result in code execution
vulnerabilities or at least application crashes.

II. SOURCES

• RAD: A Compile-Time Solution to Buffer Overflow At-
tacks [1] (might not protect against e.g. vtable overrides,
PLT address changes, . . . )

• Dependent types for low-level programming [2]
• StackGuard: Automatic Adaptive Detection and Preven-

tion of Buffer-Overflow Attachs [3] (ineffective in com-
bination with information leaks)

• Type-Assisted Dynamic Buffer Overflow Detection [4]

III. MAIN PART, TODO
A. Background

text

B. Concept and Methods
• Runtime bounds checks
• Prevent overriding return address
• Restricting language features to a secure subset
• Static analysis
• Dependent types (only allow indexing with values that

are proven to be in bounds)

C. Discussion

text

IV. CONCUSION AND OUTLOOK

text

REFERENCES

[1] T.-c. Chiueh and F.-H. Hsu, “RAD: A Compile-Time Solution to Buffer
Overflow Attacks,” in 21st International Conference on Distributed
Computing Systems, 2001.

[2] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “Dependent
types for low-level programming,” in Programming Languages and Sys-
tems, R. De Nicola, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 520–535.

[3] C. Cowan, C. Po, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Yhang, “StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks,” in 7th USENIX Security
Symposium, 1998.

[4] K.-s. Lhee and S. J. Chapin, “Type-Assisted Dynamic Buffer Overflow
Detection,” in 11th USENIX Security Symposium, 2002.


	Motivation
	Sources
	Main Part, TODO
	Background
	Concept and Methods
	Discussion

	Concusion and Outlook
	References

