
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014 27

Building a Scalable System for Stealthy
P2P-Botnet Detection

Junjie Zhang, Roberto Perdisci, Wenke Lee, Xiapu Luo, and Unum Sarfraz

Abstract— Peer-to-peer (P2P) botnets have recently been
adopted by botmasters for their resiliency against take-down
efforts. Besides being harder to take down, modern botnets tend
to be stealthier in the way they perform malicious activities,
making current detection approaches ineffective. In addition, the
rapidly growing volume of network traffic calls for high scalabil-
ity of detection systems. In this paper, we propose a novel scalable
botnet detection system capable of detecting stealthy P2P botnets.
Our system first identifies all hosts that are likely engaged in
P2P communications. It then derives statistical fingerprints to
profile P2P traffic and further distinguish between P2P botnet
traffic and legitimate P2P traffic. The parallelized computation
with bounded complexity makes scalability a built-in feature of
our system. Extensive evaluation has demonstrated both high
detection accuracy and great scalability of the proposed system.

Index Terms— Botnet, P2P, intrusion detection, network
security.

I. INTRODUCTION

ABOTNET is a collection of compromised hosts
(a.k.a. bots) that are remotely controlled by an attacker

(the botmaster) through a command and control (C&C) chan-
nel. Botnets serve as the infrastructures responsible for a
variety of cyber-crimes, such as spamming, distributed denial-
of-service (DDoS) attacks, identity theft, click fraud, etc. The
C&C channel is an essential component of a botnet because
botmasters rely on the C&C channel to issue commands to
their bots and receive information from the compromised
machines. Botnets may structure their C&C channels in dif-
ferent ways. In a centralized architecture, all bots in a botnet

Manuscript received November 3, 2012; revised July 5, 2013 and
October 24, 2013; accepted October 24, 2013. Date of publication November
11, 2013; date of current version December 16, 2013. This work was supported
in part by the Research Initiation Grant at Wright State University under Grant
282040, in part by the GRF PolyU 5389/13E, NSF under Grant CNS-1149051
and Grant 0831300, in part by the Department of Homeland Security under
Contract FA8750-08-2-0141, and in part by the Office of Naval Research
under Grant N000140710907 and Grant N000140911042. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. C.-C. Jay Kuo.

J. Zhang is with the Department of Computer Science and Engi-
neering, Wright State University, Dayton, OH 45435 USA (e-mail:
junjie.zhang@wright.edu).

R. Perdisci is with the Department of Computer Science, University of
Georgia, Athens, GA 30602 USA (e-mail: perdisci@cs.uga.edu).

W. Lee is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: wenke@cc.gatech.edu).

X. Luo is with the College of Computing, The Hong Kong Polytechnic
University, Hong Kong (e-mail: csluo@comp.polyu.edu.hk).

U. Sarfraz was with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332 USA. She is now with Cisco, San Jose,
CA 95134 USA (email: usarfraz@cisco.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2290197

contact one (or a few) C&C server(s) owned by the botmaster.
However, a fundamental disadvantage of centralized C&C
servers is that they represent a single point of failure. In order
to overcome this problem, botmasters have recently started to
build botnets with a more resilient C&C architecture, using a
peer-to-peer (P2P) structure [1]–[3] or hybrid P2P/centralized
C&C structures [4]. Bots belonging to a P2P botnet form an
overlay network in which any of the nodes (i.e., any of the
bots) can be used by the botmaster to distribute commands
to the other peers or collect information from them. Notable
examples of P2P botnets are represented by Nugache [5],
Storm [2], Waledac [4], and even Confiker, which
has been shown to embed P2P capabilities [3]. Storm and
Waledac are of particular interest because they use P2P
C&C structures as the primary way to organize their bots.
While more complex, and perhaps more costly to manage
compared to centralized botnets, P2P botnets offer higher
resiliency against take-down efforts (e.g., by law enforcement),
since even if a significant portion of bots in a P2P botnet are
disrupted the remaining bots may still be able to communicate
with each other and with the botmaster.

Detecting botnets is of great importance. However, design-
ing an effective P2P-botnet detection system is faced with sev-
eral challenges. First, the P2P file-sharing and communication
applications, such as Bittorrent, emule, and skype, are
very popular and hence C&C traffic of P2P botnets can easily
blend into the background P2P traffic. This challenge is further
compounded by the fact that a bot-compromised host may
exhibit mixed patterns of both legitimate and botnet P2P traffic
(e.g., due to the coexistence of a file-sharing P2P application
and a P2P bot on the same host). Second, modern botnets
tend to use increasingly stealthy ways to perform malicious
activities that are extremely hard to be observed in the network
traffic. For example, some botnets send spam through large
popular webmail services such as Hotmail [6], which is
likely transparent to network detectors due to encryption and
overlap with legitimate email use patterns. Third, as the vol-
ume of network traffic grows rapidly, the deployed detection
system is required to process a huge amount of information
efficiently.

To date, a few approaches capable of detecting P2P botnets
have been proposed [7]–[9]. However, these approaches can-
not address all the aforementioned challenges. For example,
BotMiner [7] identifies a group of hosts as bots belonging
to the same botnet if they share similar communication
patterns and meanwhile perform similar malicious activities,
such as scanning, spamming, exploiting, etc. Unfortunately,
the malicious activities may be stealthy and non-observable,

1556-6013 © 2013 IEEE

28 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

thereby making BotMiner ineffective. In addition, BotMiner’s
scalability is significantly constrained [10]. Yen et al. [8]
proposed an algorithm that aims to distinguish between hosts
that run legitimate P2P file sharing applications and P2P bots.
Nevertheless, this algorithm [8] does not take into account the
fact that a bot may coexist with a legitimate P2P application
on the same host. As a consequence, the mixed traffic profile
of the compromised host may disguise the communication
patterns related to the bot, rendering the algorithm [8] inef-
fective. BotGrep [9] analyzes network flows collected over
multiple large networks (e.g., ISP networks), and attempts
to detect P2P botnets by analyzing the communication graph
formed by overlay networks. Although BotGrep does not rely
on malicious activities for detection, it requires a global view
of Internet traffic and a priori detection results from additional
systems to bootstrap the detection. However, it is extremely
hard to acquire such information in practice.

In this paper, we present a novel scalable botnet detection
system capable of detecting stealthy P2P botnets. We refer to a
stealthy P2P botnet as a P2P botnet whose malicious activities
may not be observable in the network traffic. Particularly, our
system aims to detect stealthy P2P botnet even if P2P botnet
traffic is overlapped with traffic generated by legitimate P2P
applications (e.g., Skype) running on the same compromised
host and ii) achieve high scalability. To this end, our system
identifies P2P bots within a monitored network by detect-
ing the C&C communication patterns that characterize P2P
botnets, regardless of how they perform malicious activities in
response to the botmaster’s commands. Specifically, it derives
statistical fingerprints of the P2P communications generated
by P2P hosts and leverages them to distinguish between
hosts that are part of legitimate P2P networks (e.g., file-
sharing networks) and P2P bots. The high scalability of our
system stems from the parallelized computation with bounded
computational complexity. To summarize, our work makes the
following contributions:

1) A new flow-clustering-based analysis approach to iden-
tify hosts that engage in P2P communications.

2) An efficient algorithm for P2P traffic profiling, where
we build statistical fingerprints to profile various P2P
applications and estimate their active time.

3) A P2P botnet detection method that can effectively
detect stealthy P2P bots even if the P2P botnet traffic
is overlapped with traffic generated by legitimate P2P
applications (e.g., Skype) running on the same compro-
mised machine.

4) A scalable design based on an efficient detection algo-
rithm and parallelized computation.

5) A prototype system and extensive evaluation based on
real-world network traffic, which has demonstrated high
detection accuracy (i.e., a detection rate of 100% and
0.2% false positive rate) and great scalability (i.e.,
processing 80 million flows in 0.8 hour) of our design.

Compared to our preliminary version of this work [11],
we have made the following substantial improvements.
First, we simplified the system design by eliminating a coarse-
grained analysis component for P2P client detection based on
failed network connections without sacrificing its detection

performance. The new design eradicates the necessity of
keeping failed connections, reducing the storage cost by 60%.
Second, we redesigned the clustering-based P2P client detec-
tion algorithm to enhance its efficiency, which decreases the
processing time by at least 68% compared to the original
design. Third, we parallelize our system to boost its scalability
and demonstrated its efficiency. Finally, we have empirically
evaluated the extent to which configurable parameters affect
the detection performance and manifested that our system is
effective over a large range of parameter values.

II. RELATED WORK

A few approaches capable of detecting P2P botnets have
been proposed [7]–[9], [12]–[14]. Compared with the existing
methods [7]–[9], the design goals of our approach are different
in that: 1) our approach does not assume that malicious
activities are observable, unlike [7]; 2) our approach does not
require any botnet-specific information to make the detection,
unlike [9]; 3) our approach needs to detect the compromised
hosts that run both P2P bot and other legitimate P2P applica-
tions at the same time, unlike [8]; and 4) different from [7]–[9],
our approach has high scalability as a built-in feature. Other
methods [12]–[14] use machine learning for detection, which
require labeled P2P botnet data to train a statistical classifier.
Unfortunately, acquiring such information is a challenging
task, thereby drastically limiting the practical use of these
methods.

To achieve the aforementioned design goals, our sys-
tem includes multiple components. The first one is a flow-
clustering-based analysis approach to identify hosts that are
mostly likely running P2P applications. In contrast to exist-
ing approaches of identifying hosts running P2P applica-
tions [15]–[19], our approach differs in the following ways:
1) unlike [16], our approach does not need any content signa-
ture because encryption will make content signature useless;
2) our approach does not rely on any transport layer heuristics
(e.g., fixed source port) used by [15], [17], which can be easily
violated by P2P applications; 3) we do not need training data
set to build a machine learning based model as used in [18],
because it is very challenging to get traffic of P2P botnets
before they are detected; 4) in contrast to [19], our approach
can detect and profile various P2P applications rather than
identifying a specific P2P application (e.g., Bittorrent);
and 5) our analysis approach can estimate the active time of
a P2P application, which is critical for botnet detection.

III. SYSTEM DESIGN

System Overview: A P2P botnet relies on a P2P protocol to
establish a C&C channel and communicate with the botmaster.
Therefore P2P bots exhibit some network traffic patterns that
are common to other P2P client applications (either legitimate
or malicious). Thus, we divide our systems into two phases.
In the first phase, we aim at detecting all hosts within
the monitored network that engage in P2P communications.
As shown in Figure 1, we analyze raw traffic collected at the
edge of the monitored network and apply a pre-filtering step to
discard network flows that are unlikely to be generated by P2P

ZHANG et al.: BUILDING A SCALABLE SYSTEM FOR STEALTHY P2P-BOTNET DETECTION 29

Fig. 1. System overview.

TABLE I

NOTATIONS AND DESCRIPTIONS

TABLE II

MEASUREMENT OF FEATURES

applications. We then analyze the remaining traffic and extract
a number of statistical features to identify flows generated
by P2P clients. In the second phase, our system analyzes
the traffic generated by the P2P clients and classifies them
into either legitimate P2P clients or P2P bots. Specifically, we
investigate the active time of a P2P client and identify it as a
candidate P2P bot if it is persistently active on the underlying
host. We further analyze the overlap of peers contacted by two
candidate P2P bots to finalize detection.

To illustrate the statistical features and motivate the related
thresholds used by our system, we ran five popular P2P
applications, including Bittorrent, Emule, Limewire,
Skype, and Ares, for 24 hours to collect their traffic traces.
For the Bittorrent application, we generated two separate
24-hour traces (T-Bittorrent and T-Bittorrent-2).
In this section we report a number of measurements on the
obtained traffic traces to better motivate the design of statistical
features, whose notations are summarized in Table I. Table II
reports the feature values measured on the collected traffic
traces. We now elaborate on each component of our system.

A. Identifying P2P Clients

Traffic Filter The Traffic Filter component aims at filtering
out network traffic that is unlikely to be related to P2P
communications. This is accomplished by passively analyzing
DNS traffic, and identifying network flows whose destination
IP addresses were previously resolved in DNS responses.
Specifically, we leverage the following feature: P2P clients
usually contact their peers directly by looking up IPs from a
routing table for the overlay network, rather than resolving a
domain name. This feature is supported by Table II (No-DNS
Peers), which illustrates that the vast majority of flows gener-
ated by P2P applications do not have destination IPs resolved

from domain names. The remaining small fraction of flows are
corresponding to a possible exception that a peer bootstraps
into a P2P network by looking up domain names that resolve
to stable super-nodes) Since most non-P2P applications (e.g.,
browsers, email clients, etc.) often connect to a destination
address resulting from domain name resolution, this simple
filter can eliminate a very large percentage of non-P2P traffic,
while retaining the vast majority of P2P communications.

Fine-Grained Detection of P2P Clients: This component
is responsible for detecting P2P clients by analyzing the
remaining network flows after the Traffic Filter component.
For each host h within the monitored network we identify two
flow sets, denoted as Stcp(h) and Sudp(h), which contain the
flows related to successful outgoing TCP and UDP connection,
respectively. We consider as successful those TCP connections
with a completed SYN, SYN/ACK, ACK handshake, and
those UDP (virtual) connections for which there was at least
one “request” packet and a consequent response packet.

In order to detect P2P clients, we first consider the fact
that each P2P client frequently exchanges control messages
(e.g., ping/pong messages) with other peers. Besides, we notice
that the characteristics of these messages, such as the size
and frequency of the exchanged packets, are similar for nodes
in the same P2P network, and vary depending on the P2P
protocol and network in use. As a consequence, if two network
flows are generated by the same P2P application and they
carry the same type of P2P control messages, they tend to
share similar flow size. In addition, a P2P client will exchange
control messages with a large number of peers distributed
in many different networks. Consequently, the destination IP
addresses of network flows that carry these control messages
will spread across a large number of networks where each
network can be represented by its BGP prefix.

To identify flows corresponding to P2P control messages,
we first apply a flow clustering process intended to group
together similar flows for each candidate P2P node h.
Given sets of flows Stcp(h) and Sudp(h), we characterize
each flow using a vector of statistical features v(h) =
[Pkts , Pktr , Bytes , Byter], in which Pkts and Pktr represent
the number of packets sent and received, and Bytes and Byter

represent the number of bytes sent and received, respectively.
The distance between two flows is subsequently defined as
the euclidean distance of their two corresponding vectors. We
then apply a clustering algorithm to partition the set of flows
into a number of clusters. Each of the obtained clusters of
flows, C j (h), represents a group of flows with similar size.
For each C j (h), we consider the set of destination IP addresses
related to the flows in the clusters, and for each of these IPs
we consider its BGP prefix (using BGP prefix announcements).

30 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Fig. 2. Example of flow clustering to identify P2P hosts.

Finally, we count the number of distinct BGP prefixes related
to destination IPs in a cluster bgp j = BG P(C j (h)), and
discard those clusters of flows for which bgp j < �bgp. We call
fingerprint clusters the remaining cluster of flows. Therefore,
each host h can now be described by a set of fingerprint
clusters FC(h) = {FC1, . . . , FCk}. We label h as P2P node
if FC(h) �= ∅, namely if h generated at least one fingerprint
cluster.

Figure 2 illustrates an example of the flow cluster-
ing process for a P2P node. Flows corresponding to
ping/pong and peer-discovery share similar sizes, and
hence they are grouped into two clusters (FC1 and FC2),
respectively. Since the number of destination BGP pre-
fixes involved in each cluster is larger than �bgp, we take
FC1 and FC2 as its fingerprint clusters. A fingerprint
cluster summary, (Pkts , Pktr , Bytes , Byter , proto), repre-
sents the protocol and the average number of sent/received
packets/bytes for all the flows in this fingerprint clus-
ter. We implemented the flow analysis component (with
�bgp = 50) and identified fingerprint cluster for the
sample P2P traces including two Bittorrent traces
(T-Bittorrent, T-Bittorrent-2), and one Skype
trace. Figure 3 describes the distribution of flow sizes for
these two Bittorrent traces and a large number of
flows share similar sizes. The summaries of the fingerprint
clusters are illustrated in Table III, which can successfully
cluster flows with similar sizes as presented in Figure 3.
Particularly, manual investigation of the flow payload has
confirmed flows corresponding to two fingerprint clusters,
“(1 1 145 319, UDP)” and “(1 1 109 100, UDP)”, are used
for node discovery and exchanging ping/pong messages,
respectively.

B. Detecting P2P Bots

Coarse-Grained Detection of P2P Bots: Since bots are
malicious programs used to perform profitable malicious activ-
ities, they represent valuable assets for the botmaster, who
will intuitively try to maximize utilization of bots. This is
particularly true for P2P bots because in order to have a
functional overlay network (the botnet), a sufficient number
of peers needs to be always online. In other words, the active
time of a bot should be comparable with the active time of
the underlying compromised system. If this was not the case,
the botnet overlay network would risk degenerating into a
number of disconnected subnetworks due to the short life time
of each single node. In contrast, the active time of legitimate

Fig. 3. CDF of flow size.

TABLE III

SUMMARIES OF FINGERPRINT CLUSTERS

P2P applications is determined by users, which is likely to
be transient. For example, some users tend to use their file-
sharing P2P clients only to download a limited number of
files before shutting down the P2P application [20]. In this
case, the active time of the legitimate P2P application may be
much shorter compared to the active time of the underlying
system. It is worth noting that some users may run certain
legitimate P2P applications for as long as their machine is
on. For example, Skype is a popular P2P application for
instant messaging and voice-over-IP (VoIP) that is often setup
to start after system boot, and that keeps running until the
system is turned off. Therefore, such Skype clients (or other
“persistent” P2P clients) will not be filtered out at this stage.

Hence, the first component in the “Phase II” of our system
(“Coarse-Grained Detection of P2P Bots”) aims at identifying
P2P clients that are active for a time TP2P close to the
active time Tsys of the underlying system they are running
on. While this behavior is not unique to P2P bots and may be
representative of other P2P applications (e.g., Skype clients
that run for as long as a machine is on), identifying persistent
P2P clients takes us one step closer to identifying P2P bots.

To estimate Tsys we proceed as follows. For each host
h ∈ H that we identified as P2P clients according to
Section IV-B, we consider the timestamp tstart(h) of the first
network flow we observed from h and the timestamp tend (h)
related to the last flow we have seen from h. Afterwards, we
divide the time tend (h) − tstart(h) into w epochs (e.g., of one
hour each), denoted as T = [t1, . . . ti , . . . , tw]. We further
compute a vector A(h, T) = [a1, . . . ai , . . . , aw] where ai is
equal to 1 if h generated any network traffic between ti−1 and
ti . We then estimate the active time of h as Tsys = ∑w

i=1 ai .
In order to estimate the active time of a P2P application,

we can leverage obtained fingerprint clusters. It is because
that a P2P application periodically exchanges network con-
trol (e.g., ping/pong) messages with other peers as long as

ZHANG et al.: BUILDING A SCALABLE SYSTEM FOR STEALTHY P2P-BOTNET DETECTION 31

the P2P application is active. For each host h (again, we
consider only the hosts in H, which we previously identi-
fied as P2P clients), we examine the set of its fingerprint
clusters FC(h) = {FC1, . . . FC j . . . , FCk} (see Section III).
Based on the flows belonging to a fingerprint cluster FC j ,
we use the same approach of computing Tsys to calcu-
late its active time, denoted as T (FC j). Then, we estimate
the active time (TP2P) of a P2P application as ˆTP2P =
max(T (FC1), . . . T (FC j), . . . T (FCk)).

If the ratio r(h) = ˆTP2P
Tsys

> �P2P , we say that h is
running a persistent P2P application, and add it to a set P
of candidate P2P bots. Host h will then be input to next step,
where h will be represented by a set of persistent fingerprint
clusters for h, denoted as FCp(h) = {FC1

i , . . . , FC j
k } where

T (FCi)/Tsys > �P2P for any FCi ∈ FCp(h).
As illustrated in Table II, the estimated active time ˆTP2P

is the same as the actual active time (TP2P) for each P2P
application, which demonstrates that ˆTP2P can accurately
approximate TP2P . As we can see from Table II, when we
leave a P2P application running for as long as the machine
is on (24 hours for this particular experiment), we obtain
a ratio r(h) = 1. Therefore, we decided to conservatively
set �P2P = 0.5. Nclust in Table II illustrates the size of
FCp(h), the number of fingerprint clusters (FCs) whose
BG P(FC) > �bgp and T (FC) > �p2p.

Fine-Grained Detection of P2P Bots: The objective of
this component is to identify P2P bots from all persistent P2P
clients (i.e., set P). We leverage one feature: the overlap of
peers contacted by two P2P bots belonging to the same P2P
botnet is much larger than that contacted by two clients in
the same legitimate P2P network. Assume that two hosts in
the monitored network, say h A and h B , are running the same
legitimate P2P file-sharing application (e.g., Emule). Users
of these two P2P clients will most likely have uncorrelated
usage patterns. It is reasonable to assume that in the general
case the two users will search for and download different
content (e.g., different media files or documents) from the
P2P network. This translates into a divergence between the
set of IP addresses contacted by hosts h A and h B . The reason
is that the two P2P clients will tend to exchange P2P control
messages (e.g., ping/pong and search requests) with different
sets of peers which “own” the content requested by their users,
or peers that are along the path towards the content. On the
contrary, if h A and h B are compromised with P2P bots, one
common characteristic of bots is that they need to periodically
search for commands published by the botmaster [21]. This
typically translates into a convergence between the set of IPs
contacted by h A and h B .

In order to leverage this feature, we represent each
host h ∈ P using its persistent fingerprint clusters
FCp(h) = {FC1, . . . , FCk}. Each fingerprint cluster FCi

is converted to a vector [Bytes,i , Byter,i ,�i]. In this vec-
tor, Bytes,i (Bytes,i) is the average number of bytes sent
(received) per flow in FCi . �i is a set that contains the
destination IP addresses (peers) of the flows in FCi .

We further define two distance functions below, where
FC(a)

i and FC(b)
j represent two fingerprint clusters from two

persistent P2P clients, ha and hb , respectively.

• dbytes(FC(a)
i , FC(b)

j)

=
√

(Byte
(a)
s,i − Byte

(b)
s, j)

2 + (Byte
(a)
r,i − Byte

(b)
r, j)

2

• dI Ps(FC(a)
i , FC(b)

j) = 1 − |�a
i ∩�b

j |
|�a

i ∪�b
j |

If two P2P clients (say ha and hb) belong to the same
P2P network, regardless of a legitimate P2P network or a P2P
botnet network, these two clients will follow the same imple-
mentation of the identical P2P protocol. Hence, the network
flows corresponding to the same type of P2P control messages
(e.g., ping/pong messages) will exhibit similar flow sizes
across P2P clients running the same P2P application. Since
a fingerprint cluster summarizes network flows for the same
type of control messages in one client, two fingerprint clusters
corresponding to the same P2P control messages belonging to
the same P2P application will have similar flow size. In other
words, two P2P clients from the same P2P network will share
at least one pair of fingerprint clusters (FC(a)

i , FC(b)
j), which

have a small value of dbytes(FC(a)
i , FC(b)

j) since they are
corresponding to the same P2P control message. Otherwise,
if two P2P clients belong to different P2P networks, dbytes

tends to be large.
Given two P2P bots (say ha and hb) belonging to the

same botnet, the sets of peers contacted by these two bots,
denoted as �a

i and �b
j , will share a large overlap, thereby

generating a small value of dI Ps(FC(a)
i , FC(b)

j). Otherwise, if
two P2P clients belong to i) the same legitimate P2P network
or ii) different P2P networks, they will share a small overlap
and produce a large value of dI Ps(FC(a)

i , FC(b)
j).

We further define a distance function dist (ha, hb) to quan-
tify the similarity of two P2P clients by integrating dbytes

and dI Ps . dist (ha, hb) tends to yield a small value if ha

and hb are infected with bots from the same P2P botnet.
Especially, even if ha and hb are infected with P2P bots
from the same botnet and they run legitimate P2P applications
simultaneously, the distance quantified by dist (ha, hb) will be
small. It is because that at least one pair of fingerprint clusters
that are generated by P2P bots will yield small values for for
both dbytes and dI Ps .

dist (ha, hb) = min
i, j

(
λ ∗ dbytes(FC(a)

i , FC(b)
j) − minB

maxB − minB

+ (1 − λ) ∗ dI Ps(FC(a)
i , FC(b)

j)
)

where

• FC(x)
k is the k-th fingerprint cluster of host hx

• minB = mini, j dbytes(FC(a)
i , FC(b)

j)

• maxB = maxi, j dbytes(FC(a)
i , FC(b)

j)
• λ is a predefined constants, which we set to λ = 0.5.

After computing the distance between each pair of hosts
(i.e., hosts in set P), we apply hierarchical clustering, and
group together hosts according to the distance defined above.
In practice the hierarchical clustering algorithm will produce
a dendrogram (a tree-like data structure). The dendrogram
expresses the “relationship” between hosts. The closer two

32 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

hosts are, the lower they are connected at in the dendro-
gram. Two P2P bots in the same botnet should have small
distance and thus are connected at lower level (forming a
dense cluster). In contrast, legitimate P2P applications tend
to have large distances and consequently are connected at
the upper level. We then classify hosts in dense clusters as
P2P bots, and discard all other clusters and the related hosts,
which we classify as legitimate P2P clients. In practice, we
cut the dendrogram at �bot (�bot ∈ [0, 1]) of the maximum
dendrogram height (�bot ∗heightmax). To set �bot , we assume
that: a) we do not have a labeled data set of botnet traffic;
b) the distance between two legitimate P2P applications is
much larger than that between two bots belonging to the same
botnet (as motivated above). Therefore, we conservatively set
�bot = 0.95.

IV. SYSTEM IMPLEMENTATION

The implementation objective is to integrate high scal-
ability as a built-in feature into our system. To this end,
we first identify the performance bottleneck of our sys-
tem and then mitigate it using complexity reduction and
parallelization.

A. Performance Bottleneck

Out of four components in our system, “Traffic Filter”
and “Coarse-Grained Detection of P2P Bots” have linear
complexity since they need to scan flows only once to
identify flows with destination addresses resolved from DNS
queries or calculate the active time. Other two components,
“Fine-Grained Detection of P2P Clients” and “Fine-Grained
P2P Detection of P2P Bots”, require pairwise comparison for
distance calculation. Specifically, if we denote the number of
flows generated by a host as n and the number of hosts as S,
the time complexity of Fine-Grained Detection of P2P Clients
approximates O(S∗n2). Comparably, if we denote the number
of persistent P2P clients as l, the time complexity of Fine-
Grained P2P Bot Detection approximates O(l2). Since the
number of flows generated by network applications (i.e., n)
could be enormous (e.g., more than hundreds of thousands of
flows are generated by a single P2P client in our experiments),
the computation overhead of Fine-Grained Detection of P2P
Clients may become prohibitive. On contrary, the percent-
age of P2P clients in the ISP network is relatively small
(e.g., 3%-13% as reported in [22]). Consequently, Fine-
Grained P2P Bot Detection is unlikely to introduce huge
performance overhead. For instance, given a typical ISP net-
work or a large enterprise network that has 65,536 hosts (/16
subnet), if we assume that 8% hosts run P2P applications
and conservatively assume that half of them are persistent,
the number of persistent P2P clients (i.e., l) subject to analy-
sis by Fine-Grained P2P Bot Detection is 2,221, incurring
negligible overhead. To summarize, “Fine-Grained P2P Client
Detection” is the performance bottleneck.

B. Two-Step Flow Clustering

We use a two-step clustering approach to reduce the time
complexity of “Fine-Grained P2P Client Detection”. For the

first-step clustering, we use an efficient clustering algorithm
to aggregate network flows into K sub-clusters, and each sub-
cluster contains flows that are very similar to each other. For
the second-step clustering, we investigate the global distribu-
tion of sub-clusters and further group similar sub-clusters into
clusters.

The distance of two flows is defined as the Euclidean
distance of their corresponding vectors, where each vector
[Pkts , Pktr , Bytes , Byter] represents the number of pack-
ets/bytes that are sent/received in a flow. In our original
design [11] , we have adopted BIRCH [23], a streaming
clustering algorithm. The number of clusters generated by
BIRCH is mainly decided by a predefined parameter R, which
quantifies the radius of a cluster. A greater value of R implies
less clusters. Although BIRCH can perform approximate clus-
tering of an arbitrarily large dataset given constrained memory
space by scanning the dataset only once, estimating K from R
remains a challenging task. To partially address this challenge
in our original design, we adopted an empirical way: we start
from a small R value (e.g., R = 0) and gradually increase it by
δ until K clusters are generated. Since the number of clusters
generated by BIRCH is sensitive to R, δ has to be very small
to assure that R is not overlarge. As a result, a huge number
of iterations have to be explored until we find appropriate R
that yields K sub-clusters. This procedure results in a large
amount of computation time.

In the current design, we employ K -means as the first-
step clustering. The main reason is that K -Means can achieve
bounded time complexity O(nK I), where K explicitly indi-
cates the number of expected clusters, n is the number of
flows for each host, and I is the maximum number of
iterations.

For the second-step clustering, we use hierarchical cluster-
ing with DaviesBouldin validation [24] to group sub-clusters
into clusters. Each sub-cluster is represented using a vector
([Pkts, Pktr , Bytes , Byter]), which is essentially the average
for all flow vectors in this sub-cluster. Hierarchical cluster-
ing is used to build a dendrogram. Finally, DaviesBouldin
validation is employed to assess the global distribution of
inter- and intra-cluster distances of clusters based on various
clustering decisions and yield the best cut for the dendrogram.
The two-step clustering algorithm has the time complexity of
O(nK I + K 2).

C. System Parallelization

Since the two-step clustering analyzes network flows for
each single host, we can parallelize the computation for all
hosts. We formulate the problem as follows: given S hosts
denoted as H = {h1, h2, . . . hS} and M computation nodes
denoted as C = {c1, c2, . . . cM }, we partition H into M
exclusive subsets H T1, H T2..H TM and assign H Ti to ci for
analysis, whose processing time is denoted as exc(ci, H Ti).
Our target is to design a partition algorithm so that the overall
processing time, denoted as T = max(exc(ci, H Ti)), is
minimized. If we assume each computation node has the same
capacity, T will be minimized when the analysis workload is
evenly distributed across all computation nodes.

ZHANG et al.: BUILDING A SCALABLE SYSTEM FOR STEALTHY P2P-BOTNET DETECTION 33

TABLE IV

TRAFFIC STATISTICS FOR OUR ACADEMIC NETWORK

To this end, we need a function that estimates the time
consumption based on the number of flows generated by a
host. We denote this function as g(fi), where fi is the number
of flows initiated by an host hi (i.e., fi = |Stcp(hi)| +
|Sudp(hi)|). An empirical approach is used to derive g(fi). We
first randomly sample a small number of hosts from H , say P
(e.g., P = 10), which have f 1

i , f 2
j , . . . , f P

n flows respectively.
We then apply the two-step clustering analysis to each sampled
host and obtain their execution time, t1, t2, . . . , tP . Given
f 1
i , f 2

j , . . . , f P
n and t1, t2, . . . , tP , a function g() can be finally

learnt using the regression model. Since the time complexity
of the two-step clustering algorithm is O(nK I + K 2), the
linear regression model is adopted. After getting g(fi), we
introduce a cumulative function G(fi) = ∑w=i

w=1 g(hw). We
assign hi to the dth (d = 1, 2 . . . M) computation node if
(d − 1) ∗ G(fN)

M < G(fi) ≤ d ∗ G(fN)
M so that each node is

given approximately the same workload.
By following these two approaches, we successfully elimi-

nate the performance bottleneck by reducing the computational
complexity from O(S ∗ n2) to O(S

M ∗ (nK I + K 2)).

V. EVALUATION

A. Network Traces

The traffic we collected from an academic network came
from a span port mirroring all traffic crossing the gateway
router (around 200-300Mbps) for the college networks. We
used Argus [25] to efficiently collect network flow infor-
mation of the traffic between internal and external networks
for one entire day. Along with various flow statistics we also
recorded the first 200 bytes of each flow payload, which
we used to identify known legitimate P2P clients within our
network. The DNS traffic was collected simultaneously with
the network flow information, using dnscap, to keep track
of all the domain-to-IP mappings needed to perform traffic
volume reduction. Overall, we observed 953 active hosts,
as reported in Table IV. We refer to the traffic collected
from our academic network as N ETCoC . Different from our
original design in [11], our new design ignores flows of failed
connections, which account for 60% in N ETCoC , thereby
reducing the storage cost by 60%.

In order to establish ground truth in terms of what hosts
are running P2P applications, we used a signature-based
approach that matches the signatures from [26] onto the first
200 bytes of each network flow. After manual validation, we
identified a total of 3 hosts that were running Bittorrent,
which we denoted as “BT1@C”, “BT2@C” and “BT3@C”.
Furthermore, there exists no signature that can match P2P
traffic generated by Skype, since Skype communications are
encrypted. However, using the statistical traffic fingerprints,
we were able to identify 5 likely Skype clients within
our network (the details are discussed in [11]), denoted as

TABLE V

TRACES OF POPULAR P2P APPLICATIONS

TABLE VI

TRACES OF BOTNETS

“Skype1@C”, “Skype2@C”, . . ., “Skype5@C”. We refer to
the network traces corresponding to these 8 P2P clients as
N ETP2P@CoC .

In order to increase the number and diversity of P2P
nodes in our network, we ran 5 popular P2P applications,
including Bittorrent, Emule, Limewire, Skype, and
Ares. We ran each of the 5 P2P applications in two dif-
ferent (virtual) hosts for several hours (e.g., 24 or 5 hours)
simultaneously. Each host was represented by a WindowsXP
(virtual) machine with a public IP address selected within a /24
network. Given a P2P application among the 5 we considered,
we manually interacted with one instance (on one host) to
simulate typical human-driven application usage behavior, and
we fed the second instance of the application (on the second
host) with automatically generated user-interface input. This
artificial user input was simulated using an AutoIt [27] script
that randomly selects contents to be downloaded or uploaded
using the P2P application at random time intervals. Therefore,
overall we obtained 10 additional network traces related to
traffic generated by P2P applications (Table V shows some
statistics related to these network traces). We refer to these
network traces as N ETP2P .

We were able to obtain network traces for two popular P2P
botnets, Storm and Waledac, by purposely running their
malware samples in a controlled environment and recording
their network behavior. We refer to these network traces
as N ETbots . The Storm traces included 13 different bot-
compromised hosts and the Waledac included 3 different
bot-compromised hosts, as shown in the first two rows in
Table VI. In addition, we obtained network traces belonging to
the Zeus botnet (denoted as N ETZeus), which is a relatively
new P2P botnet since it reportedly integrated P2P C&Cs from
Oct 2011 [28]. Unfortunately, since N ETZeus contain only
one Zeus bot, it is insufficient to evaluate the detection
performance of our system. Nevertheless, it can still be used
to evaluate our system’s capability on profiling new P2P bots.

B. Experiment Setup

We prepared a data set (D) for evaluation. Specifically, we
randomly selected half (8) of the P2P bots from N ETbots .
Then for each of the 5 P2P applications we ran, we randomly
selected one out of its two traces from N ETP2P and overlaid
its traffic to the traffic of a randomly selected host from
N ETCoC . We further randomly chose 3 P2P hosts from

34 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Fig. 4. Number of hosts identified by each component.

N ETP2P@CoC . We finally overlaid each of 8 P2P bot traces
to each of the selected 8 P2P traces (5 from N ETP2P and 3
from N ETP2P@CoC). D represents the scenario that a host,
which is compromised by a P2P bot, has an active legitimate
P2P application running simultaneously. To summarize, D
is composed of 26 P2P clients including i) 16 P2P bots,
out of which 8 bots are overlaid with legitimate P2P traffic,
ii) 5 legitimate P2P clients from N ETCoC , iii) 5 legitimate
P2P clients from N ETP2P . In addition, we randomly selected
one host from N ETCoC and mixed its traffic with N ETZeus

to get a data set N ET ′
Zeus .

For the following experiments including Section V-C.1,
V-C.2, and V-C.3, we use K = 4, 000, �BG P = 50, and
�bot = 0.95. The number of hosts preserved by each com-
ponent for these three experiments are presented in Figure 4.
The evaluation of different parameter settings is discussed in
Section V-C.1.

C. Experimental Results on Botnet Detection

1) DNS-Based Traffic Filter: We applied our detection
system on data set D. The traffic filter drastically reduced the
workload for the whole system. As indicated in Figure 4, it
reduced the number of hosts subject to analysis by 67% (from
953 to 316) but retained all P2P clients.

2) Identifying and Profiling P2P Applications: Based on
the traffic after the DNS-based filter, our system discovers
fingerprint clusters. The discovered clusters can effectively not
only identify P2P clients, but also profile P2P applications
running in a host. Our system can successfully identify all
26 P2P clients in D. Examples of fingerprint cluster sum-
maries ([Pkts, Pktr , Bytes , Byter , Proto]) are presented in
Table VII and Table VIII.

Table VII presents fingerprint cluster summaries for two
Storm bots and two Waledac bots before their traffic was
overlaid with legitimate P2P client traffic. In this table, we can
find that bots from the same botnet share similar fingerprint
clusters with respect to the flow size.

In contrast to Table VII, Table VIII presents several finger-
print clusters summaries for two bots (Waledac2+BT2@C
and Storm4+Skype4@C) whose traffic is overlaid with
traffic from legitimate P2P applications. The results in this
table demonstrated that our system can effectively isolate
fingerprint clusters belonging to different P2P applications
even if these P2P applications are running in the same host. For
example, Waledac2+BT2@C, the fingerprint clusters come
from two P2P applications, where “(1 1 145 139, UDP)” and
“(1 1 75 75, UDP)” are from Bittorrent (more finger-
print clusters for Bittorrent can be found in Table XI

TABLE VII

FINGERPRINT CLUSTER SUMMARIES FOR P2P BOTS

TABLE VIII

FINGERPRINTS FOR Storm AND Waledac

TABLE IX

FINGERPRINTS FOR Zeus

and XII in [11]), and “(4 3 224 170, TCP)” together with
“(3 3 185 162, TCP)” are from Waledac (referring to
Table VII).

We used N ET ′
Zeus to evaluate whether our system can

effectively profile a Zeus bot. Our system generated 6 sta-
tistical fingerprint clusters, whose summaries are illustrated
in Table IX. Obtaining fingerprint clusters from this host
demonstrates that our system can successfully identify a P2P
application running on the host. Although a single Zeus bot
is insufficient for the final component to perform detection,
its fingerprint clusters offer valuable information: the identi-
fied P2P application (Zeus) adopts different P2P protocols
compared to known P2P applications (5 legitimate P2P appli-
cations and 2 P2P botnets) since its fingerprint clusters have
not been observed in our experiments.

3) Detecting P2P Bots: Among 26 P2P clients identified
in the previous step, 25 out of them exhibit persistent P2P
behaviors. We further evaluate the similarity of fingerprint
clusters and peer IPs for each pair of persistent P2P clients and
derive a dendrogram as shown in the Figure 5. As bots from
the same botnet share similar fingerprint clusters and a large
overlap of peer IPs, they will have small distance (dist ()),
resulting in a dense cluster of these bots in the dendrogram.
As indicated in Figure 5, all 13 Storm bots and 3 Waledac
bots form two dense clusters, respectively. We conservatively
cut the tree at �bot ∗ heightmax = 0.95 (�bot = 0.95 and
heightmax = 1). Hence, three clusters are identified and
overall 18 hosts were labeled as suspicious, which include all
16 P2P bots and 2 false positives, resulting a high detection
rate of 100% and a low false positive rate of 0.2% (2/953).

ZHANG et al.: BUILDING A SCALABLE SYSTEM FOR STEALTHY P2P-BOTNET DETECTION 35

Fig. 5. Hierarchical tree on persistent P2P hosts.

The false positives appear to be two Skype clients. The reason
for these two false positives is the conservatively configured
value of �bot , which is close to 1.

It is worth noting that the legitimate P2P application running
on a bot-compromised host may present a significant challenge
for the existing detection method such as [8]. It is mainly due
to the fact that the traffic profile of a bot-compromised host
might be completely distorted by the legitimate P2P applica-
tion running on it simultaneously. For instance, in our experi-
ments, when a host is running a Waledac and a Bitorrent
application simultaneously, the traffic profile of the whole host
is dominated by the Bittorrent application, concealing the
traffic characteristics of the Waledac: the average flow size
of the entire host is 348708 whereas the average flow size
of the Waledac bot is only 11372; the number of peer IP
addresses contacted by the entire host is 1359 compared to
only 760 contacted by the Waledac bot. Since our detection
algorithm is rooted in fingerprint clusters, which can discern
different P2P applications, it is capable of detecting P2P bots
(malicious P2P applications) even if the bot-compromised
hosts are running legitimate P2P applications.

4) Analyzing the System Scalability: After optimization,
the performance bottleneck of our system will have a low
complexity of O(S

M ∗ (nK I + K 2)), where K indicates the
number of sub-clusters generated by K -Means and M repre-
sents the number of computation nodes (e.g., processors in a
MapReduce infrastructure). As K decreases, the second-step
clustering, hierarchical clustering, processes fewer sub-clusters
and requires less time. The computation capacity grows
as M increases. We set I = 10 but the K -Means clustering
usually converged before 10 iterations in our experiments.

Figure 6a shows system performance as K decreases, where
the processing time has been reduced by 93% (from 12 hours
to 0.8 hours). In addition, Figure 6a demonstrates that our
current design (i.e., K -Means with hierarchical clustering)
outperforms the original design (i.e., Birch with hierarchical
clustering). For example, when K = 2, 000, our current
design used 0.3 hour while the original design [11] consumed
2.5 hours, reducing the processing time by 68%.

We parallelized the computation using M hosts (1 ≤
M ≤ 10 given K = 4, 000). For each value of M , we repeated

TABLE X

DETECTION RATE AND FALSE POSITIVE RATE

FOR DIFFERENT �bot AND K

the experiments 5 times and report the average running time
in Figure 6b. The experimental results demonstrated that the
processing time is reduced from 1.4 hours to 0.4 hours given
M = 5 and K = 4, 000. Our load-balance partition method
also surpasses the random partition method as indicated in
Figure 6b. All of these experiments achieve the same detection
accuracy with 100% detection rate and 0.2% false positive rate
(given �bot = 0.95).

When processing a huge amount of data, memory consump-
tion is a concern. Since our system is designed to linearly
analyze each host, the memory consumption is commensurate
with the number of flows associated with each single host.
Figure 6c presents the memory consumption of our system
given K = 4, 000 and M = 1, where the maximum con-
sumption is around 1,800M. Therefore, a single computer is
sufficient enough to operate our system.

5) Analyzing the Effect of System Parameters: While the
measurement in Section III motivates the parameter values for
�p2p, the extent to which the parameters including K , �BG P ,
and �bot affect the detection results remains unknown. In this
section, we empirically answer this question.

Although the number of sub-clusters for hierarchical clus-
tering algorithm drops as K decreases, a small K may force
dissimilar flows to be aggregated into one sub-cluster, thereby
diminishing the similarity between two fingerprint clusters
from two bots. To quantify the influence, we evaluate the
detection performance when both K and �bot are selected
from large ranges (i.e., K = 2000, 4000, 8000 and 10000, and
�bot = 0.1, 0.3 . . . 0.95). The detection rates (DR) and false
positive (FP) rates, which are reported in Table X, indicate
that the detection performance is stable over a large range of
K (e.g., ≥ 4000), and �bot ∈ [0.7, 0.95] is a good candidate
value. Table X also suggests that 0.8 or 0.9 may be a better
value for �bot compared to 0.95 used in our experiment.
This implies that when a labeled data set of P2P botnet traffic
is available we can tune this threshold (�bot) to find a better
trade-off between false positives and false negatives.

�BG P is used to filter out those clusters that are unlikely
to contain P2P control flows. If �BG P is set too small, non-
P2P hosts are likely to be identified as P2P hosts, resulting in
false positives. Likewise, if �BG P is too large, P2P bots may
be discarded and false negatives would then be introduced.
Table XI presents the number of detected bots and false
positives as �BG P is increased from 2 to 1,000. When 30 ≤
�BG P ≤ 200, our system yields a small number of false
positives and no false negative, demonstrating its effectiveness
over a large range of settings.

36 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Fig. 6. System performance. (a) Processing time with different K . (b) Processing time with parallelization. (c) Memory consumption.

TABLE XI

FALSE POSITIVES (FPS) AND FALSE NEGATIVES (FNS)

GIVEN DIFFERENT �BG P

D. Robustness Against Evasion By Mimicking Legitimate
P2P Applications

Since our system aims at differentiating P2P bots from
legitimate P2P applications, botmasters may instruct their
bots to mimic legitimate P2P protocols in order to evade
the detection. The most significant advantage for this evasion
technique is that it will not introduce any unknown fingerprint
clusters that may arouse anomaly. To be specific, botmasters
can follow two steps. First, they could modify bots so that their
network flows, which carry control messages, have similar
flow sizes compared to those belonging to legitimate P2P
applications. Further, they can instruct each bot to exchange
control messages with more peers that are unlikely to be
contacted by other bots, which will result in a small overlap of
peers contacted by two bots. In order to evaluate the robustness
of our system against such evasion technique, we perform the
following experiment by simulating these two steps.

We first sort all fingerprint clusters of a P2P application/bot
in the ascending order of its average flow size (i.e., Bytes +
Byter). We then select a legitimate P2P application as a target
P2P application. For each bot, we alter the average flow size
(i.e., Bytes and Byter) for each of its fingerprint cluster to the
flow size of its corresponding fingerprint cluster belonging to
the target P2P application. For example, if T-Bittorrent
in Table III is selected as the target application, the aver-
age flow size (Bytes and Byter) of the first (“smallest”)
fingerprint clusters of the Storm1 bot, (2 2 94 278, UDP)
(see Table VII), will be changed to that of T-Bittorrent’s
first (“smallest”) fingerprint cluster, (1 1 109 100, UDP)
(see Table III). If a bot has more fingerprint clusters than the
target P2P application, we discard the those redundant ones.

Second, for each fingerprint cluster (Bytes,i , Byter,i , �i)
that belongs to a bot, we randomly generate γ ∗|�i | peers and
add them into �i , where �i contains distinct peers contacted
by this bot in this particular fingerprint cluster. This procedure

Fig. 7. Challenges for attackers to instruct bots to contact different peers to
evade our detection.

simulates that a bot contacts γ more random peers from the
botnet in order to circumvent the detection.

We use all 5 legitimate P2P applications as target appli-
cations. For each target application, we increase γ from 0.5
to 9.5. Our system achieves a false positive rate of 0.2%
for these experiments. Given a certain value of γ , Figure 7
presents the lowest detection rate among all the target appli-
cations, where the detection rate drops when γ increases. In
order to completely bypass our system, Storm and Waledac
need to contact 5.5 and 9.5 times more peers, respectively.
Considering the fact that a Storm bot and a Waledac bot
contacted 7,073 and 4,065 peers in average, they need to
communicate with total 45,975 and 42,682 peers for successful
evasion, respectively. Consequently, bots will be more “noisy”
and thus more likely to arouse suspicion. In addition, once
a bot is detected, it will reveal the presence of much more
malicious peers, significantly facilitating the disruption efforts.

VI. POSSIBLE EVASIONS AND SOLUTIONS

If botmasters get to know about our detection algorithm,
they could attempt to modify other bots’ network behavior to
evade detection. This situation is similar to evasion attacks
against other intrusion detection systems. In this section, we
discuss the possible evasions and solutions in addition to the
“mimicking attacks” presented in Section V-D.

A. Evasion by Misusing the Traffic Filter

Botmasters may exploit our traffic filter for evasion. For
example, a botmaster may set up a DNS server and then
instruct each bot to query this server before contacting any
peer. The (malicious) DNS server can respond the bot with
a DNS response that contains the IP address of that peer.

ZHANG et al.: BUILDING A SCALABLE SYSTEM FOR STEALTHY P2P-BOTNET DETECTION 37

In this case, our traffic filter could eliminate bot flows. To
solve this problem, we can only filter out network flows whose
destination IP addresses are resolved from popular domains,
i.e., domains queried by a non-negligible fraction of hosts in
the monitored networks.

B. Evasion by Joining Legitimate P2P Applications

Bots may “blend” with legitimate P2P clients to evade
detection by directly joining legitimate P2P networks, in which
botmasters can propagate commands. In fact, the initial version
of Storm adopted this “blending” strategy, while recent
P2P botnets, including the most recent version of Storm,
Waledac, and Zeus, build their own P2P networks. Never-
theless, the “blended” P2P bots may make our detection more
difficult because bots’ fingerprint clusters will be identical to
those of legitimate P2P applications. However, since two bots
will search for the same commands and thus their fingerprint
clusters are still likely to have a large overlap of contacted
peers, which may serve as a discriminative feature by itself. In
spite of that, we acknowledge that “blended” P2P bots make
our detection very challenging in certain circumstances. For
example, when two P2P bots relay queries from legitimate
peers, their fingerprint clusters are unlikely to have large peer-
overlaps.

C. Evasion by Limiting the Activity of P2P Bots

Since the Coarse-Grained P2P Bot Detection component
leverages the feature that bots are usually persistently active
on the underlying compromised hosts, botmasters may signifi-
cantly reduce the active time of each P2P bot in order to evade
our system. Specifically, P2P bots can repeat the following
pattern: bots are active for only a short time and then silent
for a long period. While this technique might be effective,
it will introduce significant negative consequences to botnets.
First, the usability of the whole botnet is tremendously limited
as in most of the time bots will be inactive. Second, bots will
frequently join and leave the botnet, which results in high
churn rates [20]. The high churn rates affect the performance
of P2P networks significantly, causing routing failures, loss
of stored resources, and inconsistency. They may even lead
to a complete disruption of the overlay network [29], [30].
In addition, botmasters could also reduce the number of peer
IPs (or BGP prefixes) contacted by each bot to bypass the
fine-grained P2P client detection component. Nevertheless,
this approach could have a serious negative impact on the
efficiency and resiliency of the C&C infrastructure [31].

D. Evasion by Building Topology-Aware P2P Bots

Our system analyzes network traffic exchanged between
internal hosts and external networks and it assumes that at
least two bots from the same botnet. Therefore, botmasters
may design topology-aware P2P botnets for evasion. To be
specific, P2P bots inside the monitored network can form a
P2P network whereas only one among them is responsible
for communicating with external peers. In order to address
this challenge, we can further improve our system. First, we

can implement our system in a distributed manner, where all
components except the Fine-Grained Bot Detection component
can be moved “close” to end hosts to gain complete view of
their network activities. Fingerprint clusters of each single P2P
client can then be acquired by taking into account the traffic
it exchanged with other internal hosts. A centralized Fine-
Grained P2P Bot Detection Component can perform detection
based on all fingerprint clusters. As programmable network
devices (e.g., switches) gain popularity, such improvement
becomes practically feasible.

E. Evasion by Tunneling P2P Traffic Through Tor Networks

As suggested by Dennis Brown [32], botmasters could
leverage Tor’s hidden service to build P2P C&Cs that are
extremely robust against disruption efforts. In a Tor-based P2P
botnet, each peer can announce a service descriptor through
Tor’s hidden service with its IP address concealed. As a conse-
quence, the last component in our system will be affected since
bots’ IP addresses are invisible to our system. However, the
first three components can still generate accurate fingerprint
clusters. In this case, we need to extract new features from
fingerprint clusters and leverage them for detection.

F. Evasion by Randomizing Communication Behaviors

Bots could randomize their P2P communication patterns to
prevent our system from getting accurate fingerprint clusters
for P2P protocols. In this case, we can measure the number
of failed connections to perform coarse-grained detection of
P2P clients and also adopt more general features, such as the
distribution of flow/packet sizes and flow/packet intervals, to
profile P2P applications.

To summarize, although our system greatly enhances and
complements the capabilities of existing P2P botnet detection
systems, it is not perfect. We should definitely strive to
develop more robust defense techniques, where the aforemen-
tioned discussion outlines the potential improvements of our
system.

VII. CONCLUSION

In this paper, we presented a novel botnet detection system
that is able to identify stealthy P2P botnets, whose malicious
activities may not be observable. To accomplish this task,
we derive statistical fingerprints of the P2P communications
to first detect P2P clients and further distinguish between
those that are part of legitimate P2P networks (e.g., file-
sharing networks) and P2P bots. We also identify the perfor-
mance bottleneck of our system and optimize its scalability.
The evaluation results demonstrated that the proposed system
accomplishes high accuracy on detecting stealthy P2P bots and
great scalability.

REFERENCES

[1] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of the
storm and nugache trojans: P2P is here,” in Proc. USENIX, vol. 32.
2007, pp. 18–27.

[2] P. Porras, H. Saidi, and V. Yegneswaran, “A multi-perspective analysis
of the storm (peacomm) worm,” Comput. Sci. Lab., SRI Int., Menlo
Park, CA, USA, Tech. Rep., 2007.

38 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

[3] P. Porras, H. Saidi, and V. Yegneswaran. (2009). Conficker C Analysis
[Online]. Available: http://mtc.sri.com/Conficker/addendumC/index.html

[4] G. Sinclair, C. Nunnery, and B. B. Kang, “The waledac protocol: The
how and why,” in Proc. 4th Int. Conf. Malicious Unwanted Softw.,
Oct. 2009, pp. 69–77.

[5] R. Lemos. (2006). Bot Software Looks to Improve Peerage [Online].
Available: http://www.securityfocus.com/news/11390

[6] Y. Zhao, Y. Xie, F. Yu, Q. Ke, and Y. Yu, “Botgraph: Large
scale spamming botnet detection,” in Proc. 6th USENIX NSDI, 2009,
pp. 1–14.

[7] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network traffic for protocol- and structure-independent botnet
detection,” in Proc. USENIX Security, 2008, pp. 139–154.

[8] T.-F. Yen and M. K. Reiter, “Are your hosts trading or plotting?
Telling P2P file-sharing and bots apart,” in Proc. ICDCS, Jun. 2010,
pp. 241–252.

[9] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “BotGrep:
Finding P2P bots with structured graph analysis,” in Proc. USENIX
Security, 2010, pp. 1–16.

[10] J. Zhang, X. Luo, R. Perdisci, G. Gu, W. Lee, and N. Feamster,
“Boosting the scalability of botnet detection using adaptive traffic
sampling,” in Proc. 6th ACM Symp. Inf., Comput. Commun. Security,
2011, pp. 124–134.

[11] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy P2P botnets using statistical traffic fingerprints,” in Proc.
IEEE/IFIP 41st Int. Conf. DSN, Jun. 2011, pp. 121–132.

[12] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, et al.,
“Detecting P2P botnets through network behavior analysis and
machine learning,” in Proc. 9th Annu. Int. Conf. PST, Jul. 2011,
pp. 174–180.

[13] D. Liu, Y. Li, Y. Hu, and Z. Liang, “A P2P-botnet detection model and
algorithms based on network streams analysis,” in Proc. IEEE FITME,
Oct. 2010, pp. 55–58.

[14] W. Liao and C. Chang, “Peer to peer botnet detection using data mining
scheme,” in Proc. IEEE Int. Conf. ITA, Aug. 2010, pp. 1–4.

[15] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” in Proc. ACM SIGCOMM, 2005,
pp. 229–240.

[16] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of P2P traffic using application signatures,” in Proc. 13th
ACM Int. Conf. WWW, 2004, pp. 512–521.

[17] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport layer
identification of P2P traffic,” in Proc. 4th ACM SIGCOMM Conf. IMC,
2004, pp. 121–134.

[18] A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian
analysis techniques,” in Proc. ACM SIGMETRICS, 2005, pp. 50–60.

[19] M. P. Collins and M. K. Reiter, “Finding peer-to-peer file shar-
ing using coarse network behaviors,” in Proc. 11th ESORICS, 2006,
pp. 1–17.

[20] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-
peer networks,” in Proc. 6th ACM SIGCOMM Conf. IMC, 2006,
pp. 189–202.

[21] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measurements
and mitigation of peer-to-peer-based botnets: A case study on storm
worm,” in Proc. USENIX LEET, 2008, pp. 1–9.

[22] G. Bartlett, J. Heidemann, C. Papadopoulos, and J. Pepin, “Estimating
P2P traffic volume at USC,” USC/Information Sciences Institute, Los
Angeles, CA, USA, Tech. Rep. ISI-TR-2007-645, 2007.

[23] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” in Proc. ACM SIGMOD,
1996, pp. 103–114.

[24] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” J. Intell. Inf. Syst., vol. 17, nos. 2–3, pp. 107–145, 2001.

[25] (2011). Argus: Auditing Network Activity [Online]. Available:
http://www.qosient.com/argus/

[26] Z. Li, A. Goyal, Y. Chen, and A. Kuzmanovic, “Measurement and diag-
nosis of address misconfigured P2P traffic,” in Proc. IEEE INFOCOM,
Mar. 2010, pp. 1–9.

[27] (2011). Autoit Script [Online]. Available: http://www.autoitscript.
com/autoit3/index.shtml

[28] (2011). Zeus Gets More Sophisticated Using P2P Techniques [Online].
Available: http://www.abuse.ch/?p=3499

[29] A. Binzenhofer, D. Staehle, and R. Henjes, “On the stability of chord-
based P2P systems,” in Proc. IEEE Global Telecommun. Conf., vol. 2.
Nov./Dec. 2005, pp. 884–888.

[30] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn
in a DHT,” in Proc. Annu. Conf. USENIX Annu. Tech. Conf., 2004,
pp. 127–140.

[31] D. Dagon, G. Gu, C. Lee, and W. Lee, “A taxonomy of botnet
structures,” in Proc. 33rd Annu. Comput. Security Appl. Conf., 2007,
pp. 325–339.

[32] (2010). Resilient Botnet Command and Control with Tor
[Online]. Available: http://www.defcon.org/images/defcon-18/dc-18-
presentations/D.Brown/DEFCON-1%8-Brown-TorCnC.pdf

Junjie Zhang is an Assistant Professor with the
Department of Computer Science and Engineering,
Wright State University. He received the Ph.D.
degree in computer science from the Georgia Insti-
tute of Technology in 2012, and the M.S. degree in
systems engineering and the B.S. degree in computer
science from Xi’an Jiaotong University, China, in
2006 and 2003, respectively. His current research
focuses on network security and cyber-physical sys-
tem security.

Roberto Perdisci is an Assistant Professor with
the Computer Science Department, University of
Georgia, an Adjunct Assistant Professor with the
Georgia Tech School of Computer Science, and a
Faculty Member with the UGA Institute for Artifi-
cial Intelligence. Before joining UGA, he was Post-
Doctoral Fellow with the College of Computing,
Georgia Institute of Technology. He was the Prin-
cipal Scientist with Damballa, Inc., and received the
Ph.D. degree with the University of Cagliari, Italy.
His current research focuses on a multi-disciplinary

approach towards better defending computer networks from cyber-attacks, by
combining computer security principles with machine learning and big data
mining. In 2012, he received the NSF CAREER Award for research proposal
on automatic learning of adaptive network-centric malware detection models.

Wenke Lee is a Professor with the School of
Computer Science, College of Computing, Geor-
gia Institute of Technology. He is the Director of
the Georgia Tech Information Security Center. His
research interests include systems and network secu-
rity, applied cryptography, network management,
and data mining. He received the Ph.D. degree
in computer science from Columbia University in
1999, the B.S. degree in computer science from
Sun Yat-Sen University, China, and the M.S. degree
in computer science from the City College of

New York.

Xiapu Luo received the Ph.D. degree in computer
science from Hong Kong Polytechnic University in
2007, and he was with the Georgia Institute of
Technology as a Post-Doctoral Research Fellow. He
is currently a Research Assistant Professor with
the Department of Computing, Hong Kong Poly-
technic University. His current research focuses on
network security and privacy, internet measurement,
and smartphone security.

Unum Sarfraz received the B.E. degree in informa-
tion and communication systems from the National
University of Science and Technology (NUST), Pak-
istan, in 2008, and the M.S. degree from the Georgia
Institute of Technology, Atlanta, in 2010. From
2008 to 2009, she was a Research Assistant with
the School of Electrical Engineering and Computer
Science, NUST. Since 2011, she has been a Software
Engineer with Cisco Systems. Her research interests
focus on network security and anomaly detection.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

