172 lines
5.1 KiB
Python
172 lines
5.1 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import statistics
|
||
|
import multiprocessing
|
||
|
from random import sample
|
||
|
import glob
|
||
|
import reduce_edges
|
||
|
import rank_with_churn
|
||
|
from datetime import datetime
|
||
|
import json
|
||
|
from node_ranking import (
|
||
|
rank as rank_nr,
|
||
|
page_rank,
|
||
|
# sensor_rank,
|
||
|
find_rank,
|
||
|
parse_csv,
|
||
|
csv_loader,
|
||
|
build_graph,
|
||
|
Node,
|
||
|
RankedNode,
|
||
|
)
|
||
|
|
||
|
def sr(graph, node, number_of_nodes):
|
||
|
try:
|
||
|
return node.rank * (len(list(graph.predecessors(node))) / number_of_nodes)
|
||
|
except ZeroDivisionError as e:
|
||
|
print(f'{node=}, {number_of_nodes=}')
|
||
|
raise e
|
||
|
|
||
|
def sensor_rank(graph):
|
||
|
number_of_nodes = graph.number_of_nodes()
|
||
|
return rank_nr(
|
||
|
page_rank(graph),
|
||
|
lambda g, node: sr(g, node, number_of_nodes)
|
||
|
)
|
||
|
|
||
|
def find_known(g, known):
|
||
|
nodes = list(filter(lambda n: n.node == known.node, g.nodes()))
|
||
|
n = len(nodes)
|
||
|
assert n == 1
|
||
|
return nodes[0]
|
||
|
|
||
|
def known_out(g, known):
|
||
|
return len(list(g.successors(known)))
|
||
|
|
||
|
def known_in(g, known):
|
||
|
return len(list(g.predecessors(known)))
|
||
|
|
||
|
def high_succ(g, n, known):
|
||
|
result = []
|
||
|
counter = 0
|
||
|
# choose nodes with many successors to reduce pr
|
||
|
for node in sorted(g.nodes(), key=lambda node: len(list(g.successors(node))), reverse=True):
|
||
|
if node.node == known.node:
|
||
|
print('skipping known')
|
||
|
continue
|
||
|
if counter >= n:
|
||
|
break
|
||
|
counter += 1
|
||
|
result.append(node)
|
||
|
return result
|
||
|
|
||
|
def analyze(g):
|
||
|
known = find_known(g, rank_with_churn.KNOWN)
|
||
|
# avg_r = rank_with_churn.avg_without_known(g)
|
||
|
avg_in = rank_with_churn.avg_in(g)
|
||
|
kn_in = known_in(g, known)
|
||
|
kn_out = known_out(g, known)
|
||
|
d = list(map(lambda node: node.rank, g.nodes()))
|
||
|
mean = statistics.mean(d)
|
||
|
stddev = statistics.stdev(d)
|
||
|
return {
|
||
|
'known_rank': known.rank,
|
||
|
'known_in': kn_in,
|
||
|
'known_out': kn_out,
|
||
|
# 'avg_rank': avg_r,
|
||
|
'avg_in': avg_in,
|
||
|
'mean': mean,
|
||
|
'stdev': stddev,
|
||
|
}
|
||
|
|
||
|
|
||
|
def create_crawlers(graph, n_crawlers, n_edges):
|
||
|
nodes = list(filter(lambda n: n.node != rank_with_churn.KNOWN.node, graph.nodes()))
|
||
|
crawlers = []
|
||
|
for i in range(n_crawlers):
|
||
|
ip = f'0.0.0.{i+1}'
|
||
|
crawler = RankedNode(Node(ip, 1337), rank_with_churn.INITIAL_RANK)
|
||
|
crawlers.append(crawler)
|
||
|
candidates = sample(nodes, n_edges)
|
||
|
for candidate in candidates:
|
||
|
graph.add_edge(crawler, candidate)
|
||
|
return crawlers
|
||
|
|
||
|
|
||
|
def crawlers(n_crawlers):
|
||
|
c = []
|
||
|
for i in range(n_crawlers):
|
||
|
c.append(RankedNode(Node(f'0.0.0.{i+1}', 1337), rank_with_churn.INITIAL_RANK))
|
||
|
return c
|
||
|
|
||
|
|
||
|
def rank(path, n_crawlers):
|
||
|
edges = reduce_edges.load_data(path)
|
||
|
g = build_graph(edges, initial_rank=rank_with_churn.INITIAL_RANK)
|
||
|
|
||
|
cs = crawlers(n_crawlers)
|
||
|
print(f'adding {len(cs)} crawlers as edges')
|
||
|
for node in cs:
|
||
|
g.add_edge(rank_with_churn.KNOWN, node)
|
||
|
|
||
|
print('pr start')
|
||
|
g_pr = page_rank(page_rank(g))
|
||
|
print('sr start')
|
||
|
g_sr = sensor_rank(sensor_rank(g))
|
||
|
print('analyze pr start')
|
||
|
res_pr = analyze(g_pr)
|
||
|
print('analyze sr start')
|
||
|
res_sr = analyze(g_sr)
|
||
|
print('done!')
|
||
|
res = {'sr': res_sr, 'pr': res_pr}
|
||
|
return res
|
||
|
|
||
|
def main():
|
||
|
# pool = multiprocessing.Pool(processes=4)
|
||
|
params = []
|
||
|
for n_crawlers in [5,10,20,50]: #in reduce_edges.percentages:
|
||
|
for prc in [0.1, 0.5, 0.9]:
|
||
|
# for file in glob.glob(f'./edges_reduced/{reduced_percentage:.02f}/*.txt'):
|
||
|
for file in glob.glob(f'./edges_with_crawler/{n_crawlers:03d}_crawlers/{prc:.02f}_edges/*.txt'):
|
||
|
params.append([n_crawlers, prc, file])
|
||
|
# p = Proc(reduced_percentage, file)
|
||
|
# p.start()
|
||
|
# for added_percentage in reduce_edges.percentages:
|
||
|
# when = datetime.fromtimestamp(float(file.split('/')[-1][:-4]))
|
||
|
# print(f'{reduced_percentage=:.02f}, {added_percentage=:.02f}, {when=}')
|
||
|
# result = rank(file, added_percentage)
|
||
|
# with open(f'./data_reduced/{reduced_percentage:.02f}/{added_percentage:.02f}/{when.timestamp()}.json', 'w') as f:
|
||
|
# json.dump(result, f)
|
||
|
with multiprocessing.Pool(processes=8) as pool:
|
||
|
l_path_data = pool.map(wohoo, params)
|
||
|
for path_data in l_path_data:
|
||
|
for path, data in path_data.items():
|
||
|
with open(path, 'w') as f:
|
||
|
json.dump(data, f)
|
||
|
|
||
|
|
||
|
def wohoo(p):
|
||
|
n_crawlers = p[0]
|
||
|
prc_edges = p[1]
|
||
|
file = p[2]
|
||
|
path_data = {}
|
||
|
# ps = reduce_edges.percentages.copy()
|
||
|
# ps = [0.3, 0.5, 0.75]
|
||
|
# ps.append(0.1)
|
||
|
# ps.append(1.0)
|
||
|
# ps.append(1.2)
|
||
|
# # ps.append(2.0)
|
||
|
# for added_percentage in ps:
|
||
|
when = datetime.fromtimestamp(float(file.split('/')[-1][:-4]))
|
||
|
print(f'{n_crawlers=:03d}, {prc_edges=:.02f}, {when=}')
|
||
|
result = rank(file, n_crawlers)
|
||
|
path = f'./data_with_crawler/{n_crawlers:03d}_crawlers/{prc_edges:.02f}_edges/{when.timestamp()}.json'
|
||
|
path_data[path] = result
|
||
|
# with open() as f:
|
||
|
# json.dump(result, f)
|
||
|
return path_data
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|