Content
This commit is contained in:
1
codes/frequency_deriv/.envrc
Normal file
1
codes/frequency_deriv/.envrc
Normal file
@ -0,0 +1 @@
|
||||
eval "$(lorri direnv)"
|
70
codes/frequency_deriv/frequency_deriv.py
Normal file
70
codes/frequency_deriv/frequency_deriv.py
Normal file
@ -0,0 +1,70 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import Dict
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
from datetime import datetime
|
||||
|
||||
def load_log(path: str) -> Dict[datetime, str]:
|
||||
time_crawler = {}
|
||||
with open(path, 'r') as f:
|
||||
for line in f:
|
||||
unix_nanos, crawler, _ = line.split(' , ')
|
||||
when = datetime.utcfromtimestamp(int(unix_nanos) / 1000000000)
|
||||
time_crawler[when] = crawler
|
||||
|
||||
return time_crawler
|
||||
|
||||
|
||||
|
||||
def plot_deriv(data: Dict[datetime, str]):
|
||||
diffs = []
|
||||
per_crawler = defaultdict(list)
|
||||
sor = list(sorted(data.items(), key=lambda kv: kv[0]))
|
||||
for prev, next in zip(sor, sor[1:]):
|
||||
diffs.append(abs(2.5 - (next[0].timestamp() - prev[0].timestamp())))
|
||||
per_crawler[prev[1]].append(prev[0])
|
||||
|
||||
|
||||
# expected = [2.5] * len(diffs)
|
||||
# x = list(range(len(diffs)))
|
||||
# x = []
|
||||
x = [2.5 * x for x in range(len(diffs))]
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title('Timedelta between crawl events in seconds')
|
||||
# ax.set_ylabel()
|
||||
ax.set_xlabel('Time passed in seconds')
|
||||
ax.set_ylabel('Deviation in seconds')
|
||||
# ax.plot(x, expected, label='Expected difference')
|
||||
ax.plot(x, diffs, label='Deviation from the expected value')
|
||||
fig.legend()
|
||||
# plt.show()
|
||||
plt.savefig('./time_deriv.png')
|
||||
plt.close()
|
||||
|
||||
for c in per_crawler.keys():
|
||||
t = per_crawler[c]
|
||||
devi = []
|
||||
for pre, nex in zip(t, t[1:]):
|
||||
devi.append(abs(10 - (nex.timestamp() - pre.timestamp())))
|
||||
x = [10 * x for x in range(len(devi))]
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(x, devi)
|
||||
ax.set_title(f'Timedeviation for {c}')
|
||||
ax.set_xlabel('Time passed in seconds')
|
||||
ax.set_ylabel('Deviation in seconds')
|
||||
plt.savefig(f'./time_deriv_{c}.png')
|
||||
plt.close()
|
||||
# for ts in per_crawler[c]:
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
data = load_log('./dummy.log')
|
||||
plot_deriv(data)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
16
codes/frequency_deriv/shell.nix
Normal file
16
codes/frequency_deriv/shell.nix
Normal file
@ -0,0 +1,16 @@
|
||||
{ pkgs ? import <nixpkgs> {} }:
|
||||
let
|
||||
py-packages = python-packages: with python-packages; [
|
||||
matplotlib
|
||||
numpy
|
||||
networkx
|
||||
scipy
|
||||
];
|
||||
py-package = pkgs.python3.withPackages py-packages;
|
||||
in
|
||||
|
||||
pkgs.mkShell {
|
||||
buildInputs = [
|
||||
py-package
|
||||
];
|
||||
}
|
BIN
codes/frequency_deriv/time_deriv.png
Normal file
BIN
codes/frequency_deriv/time_deriv.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 46 KiB |
BIN
codes/frequency_deriv/time_deriv_c0.png
Normal file
BIN
codes/frequency_deriv/time_deriv_c0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 41 KiB |
BIN
codes/frequency_deriv/time_deriv_c1.png
Normal file
BIN
codes/frequency_deriv/time_deriv_c1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 25 KiB |
BIN
codes/frequency_deriv/time_deriv_c2.png
Normal file
BIN
codes/frequency_deriv/time_deriv_c2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
BIN
codes/frequency_deriv/time_deriv_c3.png
Normal file
BIN
codes/frequency_deriv/time_deriv_c3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 46 KiB |
@ -23,7 +23,7 @@ def main():
|
||||
avg_in.append(v['avg_in'])
|
||||
avg_out.append(v['avg_out'])
|
||||
known_in.append(v['known_in'])
|
||||
known_out.append(v['known_out'])
|
||||
# known_out.append(v['known_out'])
|
||||
number_of_nodes.append(v['number_of_nodes'])
|
||||
|
||||
|
||||
@ -31,11 +31,12 @@ def main():
|
||||
ax.plot(times, avg_in, label='Avg. In')
|
||||
# ax.plot(times, avg_out, label='Avg. Out')
|
||||
ax.plot(times, known_in, label='Known In')
|
||||
ax.plot(times, known_out, label='Known Out')
|
||||
ax.plot(times, number_of_nodes, label='Number of nodes')
|
||||
# ax.plot(times, known_out, label='Known Out')
|
||||
ax.plot(times, number_of_nodes, label='Total number of nodes')
|
||||
ax.set_title(f'Average edge count per hour')
|
||||
fig.autofmt_xdate()
|
||||
fig.legend()
|
||||
ax.set_ylim(ymin=0)
|
||||
plt.savefig(f'./tmp_plot.png')
|
||||
# print('created sr plot')
|
||||
plt.show()
|
||||
|
@ -124,7 +124,7 @@ def plot2(percentage, algo, data):
|
||||
fig, ax = plt.subplots()
|
||||
a = 'SensorRank' if algo == 'sr' else 'RageRank'
|
||||
ax.set_ylabel(f'{a}')
|
||||
ax.plot(times, mean, label='Avg. Rank')
|
||||
# ax.plot(times, mean, label='Avg. Rank')
|
||||
# ax.errorbar(times, mean, stdev, label='Avg. Rank')
|
||||
ax.plot(times, mean, label='Avg. Rank')
|
||||
# ax.plot(times, known_in, label='Known In') # TODO
|
||||
@ -156,13 +156,14 @@ def plot_in_out2(percentage, data):
|
||||
known_out.append(d[algo]['known_out'])
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
a = 'SensorRank' if algo == 'sr' else 'RageRank'
|
||||
ax.set_ylabel(f'{a}')
|
||||
# a = 'SensorRank' if algo == 'sr' else 'RageRank'
|
||||
ax.set_ylabel('Incoming edges')
|
||||
ax.plot(times, avg_in, label='Avg. In')
|
||||
# ax.plot(times, known_in, label='Known In') # TODO
|
||||
ax.plot(times, known_in, label='Known In')
|
||||
ax.plot(times, known_out, label='Known out')
|
||||
title = f'In And Out after removing {percentage * 100}% edges'
|
||||
# ax.plot(times, known_out, label='Known out')
|
||||
ax.set_ylim(ymin=0)
|
||||
title = f'In degree after removing {percentage * 100}% edges'
|
||||
ax.set_title(title)
|
||||
|
||||
fig.autofmt_xdate()
|
||||
|
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import networkx as nx
|
||||
import statistics
|
||||
import multiprocessing
|
||||
from random import sample
|
||||
@ -34,6 +35,19 @@ def sensor_rank(graph):
|
||||
lambda g, node: sr(g, node, number_of_nodes)
|
||||
)
|
||||
|
||||
def pr_nx(graph):
|
||||
return nx.algorithms.link_analysis.pagerank(graph, alpha=1.0)
|
||||
|
||||
def sr_nx(graph, pr_nx):
|
||||
sr = {}
|
||||
V = len(list(graph.nodes()))
|
||||
for node, rank in pr_nx.items():
|
||||
succs = len(list(graph.successors(node)))
|
||||
if succs != 0:
|
||||
preds = len(list(graph.predecessors(node)))
|
||||
sr[node] = (rank / succs) * (preds / V)
|
||||
return sr
|
||||
|
||||
def find_known(g, known):
|
||||
nodes = list(filter(lambda n: n.node == known.node, g.nodes()))
|
||||
n = len(nodes)
|
||||
@ -133,6 +147,49 @@ def rank(path):
|
||||
res = {'sr': res_sr, 'pr': res_pr}
|
||||
return res
|
||||
|
||||
|
||||
def analyze2(g, data):
|
||||
known = find_known(g, rank_with_churn.KNOWN)
|
||||
# avg_r = rank_with_churn.avg_without_known(g)
|
||||
avg_in = rank_with_churn.avg_in(g)
|
||||
kn_in = known_in(g, known)
|
||||
kn_out = known_out(g, known)
|
||||
# d = list(map(lambda node: node.rank, g.nodes()))
|
||||
d = list(map(lambda kv: kv[1], data.items()))
|
||||
mean = statistics.mean(d)
|
||||
stddev = statistics.stdev(d)
|
||||
r_known = None
|
||||
for k, v in data.items():
|
||||
if k.node == known.node:
|
||||
r_known = v
|
||||
break
|
||||
return {
|
||||
'known_rank': r_known,
|
||||
'known_in': kn_in,
|
||||
'known_out': kn_out,
|
||||
# 'avg_rank': avg_r,
|
||||
'avg_in': avg_in,
|
||||
'mean': mean,
|
||||
'stdev': stddev,
|
||||
}
|
||||
|
||||
def rank2(path):
|
||||
edges = reduce_edges.load_data(path)
|
||||
g = build_graph(edges, initial_rank=rank_with_churn.INITIAL_RANK)
|
||||
|
||||
|
||||
print('pr start')
|
||||
g_pr = pr_nx(g)
|
||||
print('sr start')
|
||||
g_sr = sr_nx(g, g_pr)
|
||||
print('analyze pr start')
|
||||
res_pr = analyze2(g, g_pr)
|
||||
print('analyze sr start')
|
||||
res_sr = analyze2(g, g_sr)
|
||||
print('done!')
|
||||
res = {'sr': res_sr, 'pr': res_pr}
|
||||
return res
|
||||
|
||||
def main():
|
||||
# pool = multiprocessing.Pool(processes=4)
|
||||
params = []
|
||||
@ -150,6 +207,7 @@ def main():
|
||||
with multiprocessing.Pool(processes=8) as pool:
|
||||
l_path_data = pool.map(wohoo, params)
|
||||
for path_data in l_path_data:
|
||||
print(f'{path_data=}')
|
||||
for path, data in path_data.items():
|
||||
with reduce_edges.open_mkdir(path, 'w') as f:
|
||||
json.dump(data, f)
|
||||
@ -171,8 +229,8 @@ def wohoo(p):
|
||||
# with open() as f:
|
||||
# json.dump(result, f)
|
||||
when = datetime.fromtimestamp(float(file.split('/')[-1][:-4]))
|
||||
path = f'./data_reduced/{reduced_percentage:.02f}/{when.timestamp()}.json'
|
||||
result = rank(file)
|
||||
path = f'./data_reduced2/{reduced_percentage:.02f}/{when.timestamp()}.json'
|
||||
result = rank2(file)
|
||||
return {path: result}
|
||||
|
||||
|
||||
|
@ -4,6 +4,7 @@ let
|
||||
matplotlib
|
||||
numpy
|
||||
networkx
|
||||
scipy
|
||||
];
|
||||
py-package = pkgs.python3.withPackages py-packages;
|
||||
in
|
||||
|
Reference in New Issue
Block a user