
MASTERTHESIS

Valentin Brandl

Collaborative Crawling of Fully Distributed
Botnets

22nd March 2022

Faculty: Informatik und Mathematik
Study Programme: Master Informatik
Supervisor: Prof. Dr. Christoph Skornia
Secondary Supervisor: Prof. Dr. Thomas Waas

TODO: abstract

2

Contents

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Formal Model of a peer-to-peer (P2P) Botnet 6
1.3 Detection Techniques for P2P Botnets 7
1.4 Detection Criteria . 8

2 Methodology 8
2.1 Protocol Primitives . 9

3 Coordination Strategies 10
3.1 Load Balancing . 11
3.2 Reduction of Request Frequency . 12
3.3 Working Against Suspicious Graph Metrics 13

4 Implementation 19

5 Further Work 21

Acronyms 27

3

1 Introduction

1 Introduction

The internet has become an irreplaceable part of our day-to-day lives. We are always
connected via numerous “smart” and internet of things (IoT) devices. We use the internet
to communicate, shop, handle financial transactions, and much more. Many personal and
professional workflows are so dependent on the internet, that they won’t work when being
offline, and with the pandemic, we are living through, this dependency grew even bigger.

1.1 Motivation

The number of connected IoT devices is around 10 billion in 2021 and is estimated to be
constantly growing over the next years up to 25 billion in 2030 [13]. Many of these devices
run on outdated software, don’t receive any updates, and don’t follow general security best
practices. While in 2016 only 77 % of German households had a broadband connection
with a bandwidth of 50 MBit/s or more, in 2020 it was already 95 % with more than 50 MBit/s

and 59 % with at least 1000 MBit/s [4]. This makes them an attractive target for botmasters graph
as im-
age?

since they are easy to infect, always online, behind internet connections that are getting
faster and faster, and due to their nature as small devices, often without any direct user
interaction, an infection can go unnoticed for a long time. In recent years, IoT botnets
have been responsible for some of the biggest distributed denial of service (DDoS) attacks
ever recorded—creating up to 1 TBit/s of traffic [8]. what

is a
bot?
In-
fected
sys-
tems.
Mal-
ware.
DGA,
beispiele,
tree vs
graph

A botnet is a network of infected computers with some means of communication to control
the infected systems. Classic botnets use one or more central coordinating hosts called
command and control (C2) servers. These C2 servers could use any protocol from internet
relay chat (IRC) over hypertext transfer protocol to Twitter [15] as communication channel
with the infected hosts. Abusive use of infected systems includes several things, e.g., DDoS

things
= bad

attacks, banking fraud, as proxies to hide the attacker’s identity, send spam emails. . .

Analyzing and shutting down a centralized botnet is comparatively easy since every bot
knows the IP address, domain name, Twitter handle or IRC channel the C2 servers are
using.

4

1 Introduction

A coordinated operation with help from law enforcement, hosting providers, domain regis-
trars, and platform providers could shut down or take over the operation by changing how
requests are rooted or simply shutting down the controlling servers/accounts.

To complicate take-down attempts, botnet operators came up with a number of ideas:
domain generation algorithms use pseudorandomly generated domain names to render
simple domain blacklist-based approaches ineffective [3] or fast-flux domain name system
(DNS), where a large pool of IP addresses is used assigned randomly to the C2 domains
to prevent IP based blacklisting [12].

C2 server

1 2 3 4

(a) Topology of a C2 controlled botnet

a b

c d

(b) Topology of a peer-to-peer (P2P) botnet

Figure 1: Communication paths in different types of botnets better
image
for
p2p,
really
needed?

A number of botnet operations were shut down like this [11] and as the defenders upped
their game, so did attackers—the idea of peer-to-peer (P2P) botnets came up. The idea

too
infor-
mal?

is to build a decentralized network without single points of failure (SPOF) where the C2
servers are as shown in Figure 1b. In a P2P botnet, each node in the network knows
a number of its neighbors and connects to those, each of these neighbors has a list of
neighbors on his own, and so on.

This lack of a SPOF makes P2P botnets more resilient to take-down attempts since the
communication is not stopped and botmasters can easily rejoin the network and send

5

1 Introduction

commands.

The constantly growing damage produced by botnets has many researchers and law en-
forcement agencies trying to shut down these operations [11, 10, 6]. The monetary value
of these botnets directly correlates with the amount of effort, botmasters are willing to put
into implementing defense mechanisms against take-down attempts. Some of these coun-
termeasures include deterrence, which limits the number of allowed bots per IP address or
subnet to 1; blacklisting, where known crawlers and sensors are blocked from communi-
cating with other bots in the network (mostly IP based); disinformation, when fake bots
are placed in the neighborhood lists, which invalidates the data collected by crawlers; and
active retaliation like DDoS attacks against sensors or crawlers [1]. source

for
con-
stantly
grow-
ing,
posi-
tion in
text

take-
down?
take
down?

1.2 Formal Model of a P2P Botnet

A P2P botnet can be modelled as a digraph

G = (V, E)

With the set of vertices V describing the bots in the network and the set of edges E

describing the communication flow between bots.

∀v ∈ V , the predecessors pred(v) and successors succ(v) are defined as:

succ(v) = {u ∈ V | (u, v) ∈ E}

pred(v) = {u ∈ V | (v, u) ∈ E}

For a vertex v ∈ V , the in and out degree deg+ and deg− describe how many bots know
v or are known by v respectively.

6

1 Introduction

deg+(v) = |pred(v)|

deg−(v) = |succ(v)|

1.3 Detection Techniques for P2P Botnets

There are two distinct methods to map and get an overview of the network topology of a
P2P botnet:

1.3.1 Passive Detection

For passive detection, traffic flows are analysed in large amounts of collected network traffic
(e.g. from internet service providers). This has some advantages in that it is not possible
for botmasters to detect or prevent data collection of that kind, but it is not trivial to
distinguish valid P2P application traffic (e.g. BitTorrent, Skype, cryptocurrencies, . . .)
from P2P bots. Zhang et al. propose a system of statistical analysis to solve some of these
problems in [17]. Also getting access to the required datasets might not be possible for
everyone. no

con-
text

BotGrep
(in
zhang_building_2014)

BotMiner
(in
zhang_building_2014)

• Large scale network analysis (hard to differentiate from legitimate P2P traffic (e.g.
BitTorrent), hard to get data, knowledge of some known bots required) [17]

• Heuristics: Same traffic patterns, same malicious behaviour

1.3.2 Active Detection

In this case, a subset of the botnet protocol are reimplemented to place pseudo-bots or
sensors in the network, which will only communicate with other nodes but won’t accept
or execute commands to perform malicious actions. The difference in behaviour from the
reference implementation and conspicuous graph properties (e.g. high deg+ vs. low deg−)
of these sensors allows botmasters to detect and block the sensor nodes.

There are three subtypes of active detection:

7

2 Methodology

1. Crawlers: recursively ask known bots for their neighbourhood lists

2. Sensors: implement a subset of the botnet protocol and become part of the network
without performing malicious actions

3. Hybrid of crawlers and sensors

1.4 Detection Criteria

• P2P online time vs host online time

• neighbourhood lists

• no/few DNS lookups; instead direct lookups from routing tables

2 Methodology

The implementation of the concepts of this work will be done as part of Botnet Monitoring
System (BMS)1, a monitoring platform for P2P botnets described by Böck et al. in [5].
BMS uses a hybrid active approach of crawlers and sensors (reimplementations of the P2P
protocol of a botnet, that won’t perform malicious actions) to collect live data from active
botnets.

In an earlier project, I implemented different node ranking algorithms (among others
“PageRank” [14]) to detect sensors and crawlers in a botnet, as described in “Sensor-
Buster”. Both ranking algorithms use the deg+ and deg− to weight the nodes. Another
way to enumerate candidates for sensors in a P2P botnet is to find weakly connected com-
ponents (WCCs) in the graph. Sensors will have few to none outgoing edges, since they
don’t participate actively in the botnet.

The goal of this work is to complicate detection mechanisms like this for botmasters by
centralizing the coordination of the system’s crawlers and sensors, thereby reducing the
node’s rank for specific graph metrics. The changes should allow the current sensors to
use the new abstraction with as few changes as possible to the existing code.

1https://github.com/Telecooperation/BMS

8

https://github.com/Telecooperation/BMS

2 Methodology

The final result should be as general as possible and not depend on any botnet’s specific
behaviour, but it assumes, that every P2P botnet has some kind of “getNeighbourList”
method in the protocol, that allows other peers to request a list of active nodes to connect
to.

In the current implementation, each sensor will itself visit and monitor each new node
it finds. The idea for this work is to report newfound nodes back to the BMS backend
first, where the graph of the known network is created, and a sensor is selected, so that
the specific ranking algorithm doesn’t calculate to a suspiciously high or low value. That
sensor will be responsible to monitor the new node.

If it is not possible, to select a specific sensor so that the monitoring activity stays inconspic-
uous, the coordinator can do a complete shuffle of all nodes between the sensors to restore
the wanted graph properties or warn if more sensors are required to stay undetected.

The improved sensor system should allow new sensors to register themselves and their
capabilities (e.g. bandwidth, geolocation), so the amount of work can be scaled accordingly
between hosts. Further work might even consider autoscaling the monitoring activity using
some kind of cloud computing provider.

To validate the result, the old sensor implementation will be compared to the new system
using different graph metrics. maybe?

If time allows, Botnet Simulation Framework2 will be used to simulate a botnet place
sensors in the simulated network and measure the improvement achieved by the coordinated
monitoring effort. which

bot-
net?

As a proof of concept, the coordinated monitoring approach will be implemented and
deployed in the (Sality, Mirai, ...)? botnet.

2.1 Protocol Primitives

The coordination protocol must allow the following operations: Testnet
+
testnet
crawler
erweit-
ern
um
mit
com-
plete
knowl-
edge
zu
veri-
fizieren

9

3 Coordination Strategies

2.1.1 Sensor to Backend

bestehende
session
Mechanik
ver-
wen-
den/erweitern

failedTries
im
back-
end
statt
eigenem
nachrich-
tentyp:
re-
move?

• registerSensor(capabilities): Register new sensor with capabilities (which
botnet, available bandwidth, . . .). This is called periodically and used to determine
which crawler is still active, when splitting the workload.

• unreachable(targets):

• requestTasks() []PeerTask: Receive a batch of crawl tasks from the coordina-
tor. The tasks consist of the target peer, if the crawler should start or stop the
operation, when it should start and stop monitoring and the frequency.

type Peer struct {
BotID string
IP string
Port uint16

}
type PeerTask struct {

Peer Peer
StartAt *Time
StopAt *Time
Frequency uint
StopCrawling bool

}

2.1.2 Backend to Sensor

3 Coordination Strategies

Let C be the set of available crawlers. Without loss of generality, if not stated otherwise,
we assume that C is known when BMS is started and will not change afterward. There
will be no joining or leaving crawlers.

2https://github.com/tklab-tud/BSF

10

https://github.com/tklab-tud/BSF

3 Coordination Strategies

3.1 Load Balancing

This strategy simply splits the work into even chunks and split it between the available
crawlers. The following sharding conditions come to mind:

• Assuming IP addresses are evenly distributed and so are infections, take the IP address
as an 32 Bit integer modulo |C|. See subsubsection 3.1.3 Problem: reassignment if
a crawler joins or leaves

• Maintain an internal counter/list of tasks for each available crawler and assign to the
crawler with the most available resources. See subsubsection 3.1.2 Easy reassignment

• Round Robin. See subsubsection 3.1.1

Load balancing in itself does not help prevent the detection of crawlers but it allows better
usage of available resources. No peer will be crawled by more than one crawler and it
allows crawling of bigger botnets where the current approach would reach its limit and
could also be worked around with scaling up the machine where the crawler is executed.
Load balancing allows scaling out, which can be more cost-effective.

3.1.1 Round Robin Distribution

3.1.2 Even Work Distribution weighted
round
robin

Work is evenly distributed between crawlers according to their capabilities. For the sake
of simplicity, we will only consider the bandwidth as capability but it can be extended by
any shared property between the crawlers, e.g. available memory, CPU speed. For a given
crawler c ∈ C let Bc be the total bandwidth of the crawler. The total available bandwidth
is B = ∑

c∈C
Bc. The weight Wc = B

Bc
defines which percentage of the work gets assigned proper

def for
weight

to c. The set of target peers P =< p0, p1, . . . , pn−1 >, is partitioned into |C| subsets
according to Wc and each subset is assigned to its crawler c.

Cn Bc Wc

0 100 10
16

1 10 1
16

2 50 5
16

remove
me

11

3 Coordination Strategies

3.1.3 IP-based Partitioning

Assuming IP addresses in a botnet are evenly distributed with regard to their mod |C|. source?
law of
large
num-
bers

Using m(i) = i mod |C| as mapping to determine which IP is assigned to which crawler.
This ensures neighboring IP addresses (e.g. in the same autonomous system (AS) and/or
geolocation) get visited by different crawlers.

3.2 Reduction of Request Frequency

The GameOver Zeus botnet deployed a blacklisting mechanism, where crawlers are blocked
based in their request frequency [2]. In a single crawler approach, the crawler frequency
has to be limited to prevent being hitting the request limit.

10 20 30 40 50 60 70 80 90 100
C 0 C 0 C 0 C 0 C 0 C 0

Figure 2: Timeline of crawler events as seen from a peer when crawled by a single crawler

Using collaborative crawlers, an arbitrarily fast frequency can be achieved without being
blacklisted. With L ∈ N being the frequency limit at which a crawler will be blacklisted,
F ∈ N being the crawl frequency that should be achieved. The amount of crawlers C

required to achieve the frequency F without being blacklisted and the offset O between
crawlers are defined as

C =
⌈

F

L

⌉
O = 1 req

F

Taking advantage of the StartAt field from the PeerTask returned by the requestTasks
primitive above, the crawlers can be scheduled offset by O at a frequency L to ensure, the
overall requests to each peer are evenly distributed over time.

12

3 Coordination Strategies

Given a limit L = 5 req/100s, crawling a botnet at F = 20 req/100s requires C =⌈
20 req/100s
5 req/100s

⌉
= 4 crawlers. Those crawlers must be scheduled O = 1 req

20 req/100s = 5 s apart at
a frequency of L for an even request distribution.

10 20 30 40 50 60 70 80 90 100
C 0 C 0 C 0 C 0 C 0 C 0C 1 C 1 C 1 C 1 C 1C 2 C 2 C 2 C 2 C 2C 3 C 3 C 3 C 3 C 3

Figure 3: Timeline of crawler events as seen from a peer when crawled by multiple crawlers

As can be seen in Figure 3, each crawler C0 to C3 performs only 5 req/100s while overall
achieving 20 req/100s.

Vice versa given an amount of crawlers C and a request limit L, the effective frequency F

can be maximized to F = C × L without hitting the limit L and being blocked.

Using the example from above with L = 5 req/100s but now only two crawlers C = 2, it
is still possible to achieve an effective frequency of F = 2× 5 req/100s = 10 req/100s and
O = 1 req

10 req/100s = 10 s:

10 20 30 40 50 60 70 80 90 100
C 0 C 0 C 0 C 0 C 0 C 0C 1 C 1 C 1 C 1 C 1

While the effective frequency of the whole system is halved compared to Figure 3, it is still
possible to double the frequency over the limit.

3.3 Working Against Suspicious Graph Metrics

“SensorBuster: On Identifying Sensor Nodes in P2P Botnets” describes different graph
metrics to find sensors in P2P botnets. These metrics depend on the uneven ratio between
incoming and outgoing edges for crawlers. One of those, “SensorBuster” uses WCCs since
crawlers don’t have any edges back to the main network in the graph.

Building a complete graph GC = K|C| between the crawlers by making them return the
other crawlers on peer list requests would still produce a disconnected component and
while being bigger and maybe not as obvious at first glance, it is still easily detectable
since there is no path from GC back to the main network (see Figure 4b and Table 1). rank?

deg+ -
deg-?

13

3 Coordination Strategies

With v ∈ V , succ(v) being the set of successors of v and pred(v) being the set of
predecessors of v, PageRank recursively is defined as [14]:

PR(v) = dampingFactor×
∑

p∈pred(v)

PR(p)
|succ(p)| +

1− dampingFactor
|V |

For the first iteration, the PageRank of all nodes is set to the same initial value. When
iterating often enough, any value can be chosen [14].

The dampingFactor describes the probability of a person visiting links on the web to con-
tinue doing so, when using PageRank to rank websites in search results. For simplicity—and
since it is not required to model human behaviour for automated crawling and ranking—a
dampingFactor of 1.0 will be used, which simplifies the formula to

PR(v) =
∑

p∈pred(v)

rank(p)
|succ(p)|

Based on this, SensorRank is defined as

SR(v) = PR(v)
|succ(v)| ×

|pred(v)|
|V | percentage

of
botnet
must
be
crawlers
to
make
a
signifi-
cant
change

14

3 Coordination Strategies

c0

n0

n2

c1

n1

c2

(a) WCCs for independent crawlers

c0

c1

c2

n0

n2

n1

(b) WCCs for collaborated crawlers

Figure 4: Differences in graph metrics
these
exam-
ples
suck;
chose
better
exam-
ples

Applying SensorRank PageRank once with an initial rank of 0.25 once on the example

15

3 Coordination Strategies

graphs above results in: pagerank,
sensor-
rank
cal-
cula-
tions,
proper
exam-
ple
graphs,
proper
table
for-
mat-
ting

Node deg+ deg− In WCC? PageRank SensorRank
n0 0/0 4/4 no 0.75/0.5625 0.3125/0.2344
n1 1/1 3/3 no 0.25/0.1875 0.0417/0.0313
n2 2/2 2/2 no 0.5/0.375 0.3333/0.25
c0 3/5 0/2 yes (1/3) 0.0/0.125 0.0/0.0104
c1 1/3 0/2 yes (1/3) 0.0/0.125 0.0/0.0104
c2 2/4 0/2 yes (1/3) 0.0/0.125 0.0/0.0104

Table 1: Values for metrics from Figure 4 (a/b)

big
graphs,
how
many
Kn to
get
signifi-
cant?

While this works for small networks, the crawlers must account for a significant amount of
peers in the network for this change to be noticeable.

for
bigger
(gen-
er-
ated)
graphs?

In our experiments on a snapshot of the Sality [7] botnet exported from BMS over the
span of 21st to 28th April 2021, even 1 iteration were enough to get distinct enough values

export
times-
pan

to detect sensors and crawlers.
Iteration Avg. PR Crawler PR Avg. SR Crawler SR
1 0.24854932 0.63277194 0.15393478 0.56545578
2 0.24854932 0.63277194 0.15393478 0.56545578
3 0.24501068 0.46486353 0.13810930 0.41540997
4 0.24501068 0.46486353 0.13810930 0.41540997
5 0.24233737 0.50602884 0.14101354 0.45219598

Table 2: Values for PageRank iterations with initial rank ∀v ∈ V : PR(v) = 0.25

(a) Distribution after 1 iteration (b) Distribution after 5 iterations

Figure 5: SensorRank distribution with initial rank ∀v ∈ V : PR(v) = 0.25

16

3 Coordination Strategies

Iteration Avg. PR Crawler PR Avg. SR Crawler SR
1 0.49709865 1.26554389 0.30786955 1.13091156
2 0.49709865 1.26554389 0.30786955 1.13091156
3 0.49002136 0.92972707 0.27621861 0.83081993
4 0.49002136 0.92972707 0.27621861 0.83081993
5 0.48467474 1.01205767 0.28202708 0.90439196

Table 3: Values for PageRank iterations with initial rank ∀v ∈ V : PR(v) = 0.5

(a) Distribution after 1 iteration (b) Distribution after 5 iterations

Figure 6: SensorRank distribution with initial rank ∀v ∈ V : PR(v) = 0.5

Iteration Avg. PR Crawler PR Avg. SR Crawler SR
1 0.74564797 1.89831583 0.46180433 1.69636734
2 0.74564797 1.89831583 0.46180433 1.69636734
3 0.73503203 1.39459060 0.41432791 1.24622990
4 0.73503203 1.39459060 0.41432791 1.24622990
5 0.72701212 1.51808651 0.42304062 1.35658794

Table 4: Values for PageRank iterations with initial rank ∀v ∈ V : PR(v) = 0.75

17

3 Coordination Strategies

(a) Distribution after 1 iteration (b) Distribution after 5 iterations

Figure 7: SensorRank distribution with initial rank ∀v ∈ V : PR(v) = 0.75

The distribution graphs in Figure 5, Figure 6 and Figure 7 show that the initial rank has
no effect on the distribution, only on the actual numeric rank values.

For all combinations of initial value and PageRank iterations, the rank for a well known
crawler is in the 95th percentile, so for our use case, those parameters do not matter.

On average, peers in the analyzed dataset have 223 successors over the whole week.
Looking at the data in smaller buckets of one hour each, the average number of successors
per peer is 90.

Churn describes the dynamics of peer participation of P2P systems, e.g. join and leave
events [16]. Detecting if a peer just left the system, in combination with knowledge about übergang
ASs, peers that just left and came from an AS with dynamic IP allocation (e.g. many
consumer broadband providers in the US and Europe), can be placed into the crawler’s
neighbourhood list. If the timing of the churn event correlates with IP rotation in the
AS, it can be assumed, that the peer left due to being assigned a new IP address—not
due to connectivity issues or going offline—and will not return using the same IP address.
These peers, when placed in the neighbourhood list of the crawlers, will introduce paths
back into the main network and defeat the WCC metric. It also helps with the PageRank
and SensorRank metrics since the crawlers start to look like regular peers without actually
supporting the network by relaying messages or propagating active peers.

18

4 Implementation

Knowledge of only 90 peers leaving due to IP rotation would be enough to make a crawler
look average in Sality. This number will differ between different botnets, depending on
implementation details and size of the network.

Adding edges from the known crawler to 90 random peers to simulate the described strategy
gives the following rankings: table,

distri-
bution
with
ran-
dom
edges

4 Implementation

Crawlers in BMS report to the backend using gRPC remote procedure calls (gRPCs)3.
Both crawlers and the backend gRPC server are implemented using the Go4 programming
language, so to make use of existing know-how and to allow others to use the implementa-
tion in the future, the coordinator backend and crawler abstraction were also implemented
in Go.

BMS already has an existing abstraction for crawlers. This implementation is highly opti-
mized but also tightly coupled and grown over time. The abstraction became leaky and
extending it proved to be complicated. A new crawler abstraction was created with testa-
bility, extensibility and most features of the existing implementation in mind, which can be
ported back to be used by the existing crawlers.

The new implementation consists of three main interfaces:

• FindPeer, to receive new crawl tasks from any source

• ReportPeer, to report newly found peers

• Protocol, the actual botnet protocol implementation used to ping a peer and re-
quest its neighbourhood list

Currently there are two sources FindPeer can use: read peers from a file on disk or
request them from the gRPC BMS coordinator. The ExactlyOnceFinder delegate can
wrap another FindPeer instance and ensures the source is only requested once. This is
used to implement the bootstrapping mechanism of the old crawler, where once, when the

3https://www.grpc.io
4https://go.dev/

19

https://www.grpc.io
https://go.dev/

4 Implementation

reportsreports

createscreates

BMSReport

«Delegate»
BatchedReport

LoggingReport «Delegate»
CombinedReport

«Delegate»
AutoCommitReport

«Worker»
CrawlPeer

«Worker»
PingPeer

FileFInder «Delegate»
ExactlyOnceFinder BMSFinder

<<Interface>>
ReportPeer

 + ReportReplies(...peer.Reply): error
+ ReportEdges(...peer.Edge): error
+ Flush(): error

<<Interface>>
FindPeer

 + FindPeers(): ([]PeerTask, error)

«Delegate»
CombinedFinder

<<Interface>>
Protocol

+ RequestPeers(peer.Peer): ([]peer.Edge, error)
+ Ping(peer.Peer): (*peer.Reply, error)
+ PingInterval(): *time.Duration
+ CrawlInterval(): *time.Duration

UseUse

Figure 8: Architecture of the new crawler

crawler is started, the list of bootstrap nodes is loaded from a textfile. CombinedFinder
can combine any amount of FindPeer instances and will return the sum of requesting all
the sources.

The PeerTask instances returned by FindPeer contain the IP address and port of the
peer, if the crawler should start or stop the operation, when to start and stop crawling and
in which interval the peer should be crawled. For each task, a CrawlPeer and PingPeer
worker is started or stopped as specified in the received PeerTask. These tasks use the
ReportPeer interface to report any new peer that is found.

Current report possibilities are LoggingReport to simply log new peers to get feedback
from the crawler at runtime, and BMSReport which reports back to BMS. BatchedReport
delegates a ReportPeer instance and batch newly found peers up to a specified batch size

20

5 Further Work

and only then flush and actually report. AutoCommitReport will automatically flush a
delegated ReportPeer instance after a fixed amount of time and is used in combination
with BatchedReport to ensure the batches are written regularly, even if the batch limit
is not reached yet. CombinedReport works analogous to CombinedFinder and combines
many ReportPeer instances into one.

PingPeer and CrawlPeer use the implementation of the botnet Protocol to perform
the actual crawling in predefined intervals, which can be overwritten on a per PeerTask
basis.

5 Further Work

Following this work, it should be possible to rewrite the existing crawlers to use the new
abstraction. This might bring some performance issues to light which can be solved by
investigating the optimizations from the old implementation and applying them to the new
one.

Another way to expand on this work is automatically scaling the available crawlers up and
down, depending on the botnet size and the number of concurrently online peers. Doing
so would allow a constant crawl interval for even highly volatile botnets.

Acknowledgments

In the end, I would like to thank

• Prof. Dr. Christoph Skornia for being a helpful supervisor in this and earlier works of
mine

• Leon Böck for offering the possibility to work on this research project, regular feed-
back and technical expertise

• Valentin Sundermann for being available for helpful ad-hoc discussions at any time
of day for many years

21

References

References

[1] Dennis Andriesse, Christian Rossow, and Herbert Bos. “Reliable Recon in Adversarial
Peer-to-Peer Botnets”. In: Proceedings of the 2015 Internet Measurement Confer-
ence. IMC ’15: Internet Measurement Conference. Tokyo Japan: ACM, Oct. 28, 2015,
pp. 129–140. isbn: 978-1-4503-3848-6. doi: 10.1145/2815675.2815682. url:
https://dl.acm.org/doi/10.1145/2815675.2815682 (visited on 11/16/2021).

[2] Dennis Andriesse et al. “Highly Resilient Peer-to-Peer Botnets Are Here: An Analysis
of Gameover Zeus”. In: 2013 8th International Conference on Malicious and Un-
wanted Software: "The Americas" (MALWARE). 2013 8th International Conference
on Malicious and Unwanted Software: "The Americas" (MALWARE). Fajardo, PR,
USA: IEEE, Oct. 2013, pp. 116–123. isbn: 978-1-4799-2534-6 978-1-4799-2535-3.
doi: 10.1109/MALWARE.2013.6703693. url: https://ieeexplore.ieee.org/
document/6703693/ (visited on 02/27/2022).

[3] Manos Antonakakis et al. “From Throw-Away Traffic to Bots: Detecting the Rise of
DGA-Based Malware”. In: 21st USENIX Security Symposium (USENIX Security 12).
Bellevue, WA: USENIX Association, Aug. 2012, pp. 491–506. isbn: 978-931971-
95-9. url: https : / / www . usenix . org / conference / usenixsecurity12 /
technical-sessions/presentation/antonakakis.

[4] Availability of broadband internet to households in Germany from 2017 to 2020,
by bandwidth class. Statista Inc. Aug. 16, 2021. url: https://www.statista.
com/statistics/460180/broadband-availability-by-bandwidth-class-
germany/ (visited on 11/11/2021), archived at https://web.archive.org/
web/20210309010747/https://www.statista.com/statistics/460180/
broadband-availability-by-bandwidth-class-germany/ on Mar. 9, 2021.

[5] Leon Böck et al. “Poster: Challenges of Accurately Measuring Churn in P2P Bot-
nets”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’19: 2019 ACM SIGSAC Conference on Computer and
Communications Security. London United Kingdom: ACM, Nov. 6, 2019, pp. 2661–
2663. isbn: 978-1-4503-6747-9. doi: 10.1145/3319535.3363281. url: https:
//dl.acm.org/doi/10.1145/3319535.3363281 (visited on 11/12/2021).

22

https://doi.org/10.1145/2815675.2815682
https://dl.acm.org/doi/10.1145/2815675.2815682
https://doi.org/10.1109/MALWARE.2013.6703693
https://ieeexplore.ieee.org/document/6703693/
https://ieeexplore.ieee.org/document/6703693/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://doi.org/10.1145/3319535.3363281
https://dl.acm.org/doi/10.1145/3319535.3363281
https://dl.acm.org/doi/10.1145/3319535.3363281

References

[6] David Dittrich. “So You Want to Take over a Botnet”. In: Proceedings of the 5th
USENIX Conference on Large-Scale Exploits and Emergent Threats. LEET’12. San
Jose, CA: USENIX Association, 2012, p. 6. doi: 10.5555/2228340.2228349.

[7] Falliere, Nicolas. Sality: Story of a Peer-to-Peer Viral Network. July 2011. url:
https://papers.vx-underground.org/archive/Symantec/sality-story-
of- peer- to- peer- 11- en.pdf (visited on 03/16/2022), archived at https:
//web.archive.org/web/20161223003320/http://www.symantec.com/
content / en / us / enterprise / media / security _ response / whitepapers /
sality_peer_to_peer_viral_network.pdf on Dec. 23, 2016.

[8] Dan Goodin. Brace yourselves — source code powering potent IoT DDoSes just
went public. Ars Technica. Oct. 2, 2016. url: https : / / arstechnica . com /
information - technology / 2016 / 10 / brace - yourselves - source - code -
powering-potent-iot-ddoses-just-went-public/ (visited on 11/11/2021),
archived at https : / / web . archive . org / web / 20211022032617 / https : / /
arstechnica.com/information-technology/2016/10/brace-yourselves-
source-code-powering-potent-iot-ddoses-just-went-public/ on Oct. 22,
2021.

[9] Shankar Karuppayah et al. “SensorBuster: On Identifying Sensor Nodes in P2P Bot-
nets”. In: Proceedings of the 12th International Conference on Availability, Reliability
and Security. ARES ’17. New York, NY, USA: Association for Computing Machin-
ery, Aug. 29, 2017, pp. 1–6. isbn: 978-1-4503-5257-4. doi: 10.1145/3098954.
3098991. url: https : / / doi . org / 10 . 1145 / 3098954 . 3098991 (visited on
03/23/2021).

[10] Yacin Nadji, Roberto Perdisci, and Manos Antonakakis. “Still Beheading Hydras:
Botnet Takedowns Then and Now”. In: IEEE Transactions on Dependable and Se-
cure Computing 14.5 (Sept. 1, 2017), pp. 535–549. issn: 1545-5971. doi: 10.
1109/TDSC.2015.2496176. url: http://ieeexplore.ieee.org/document/
7312442/ (visited on 03/17/2022).

[11] Yacin Nadji et al. “Beheading hydras: performing effective botnet takedowns”. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security - CCS ’13. the 2013 ACM SIGSAC conference. Berlin, Germany: ACM Press,
2013, pp. 121–132. isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.2516749.

23

https://doi.org/10.5555/2228340.2228349
https://papers.vx-underground.org/archive/Symantec/sality-story-of-peer-to-peer-11-en.pdf
https://papers.vx-underground.org/archive/Symantec/sality-story-of-peer-to-peer-11-en.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://doi.org/10.1145/3098954.3098991
https://doi.org/10.1145/3098954.3098991
https://doi.org/10.1145/3098954.3098991
https://doi.org/10.1109/TDSC.2015.2496176
https://doi.org/10.1109/TDSC.2015.2496176
http://ieeexplore.ieee.org/document/7312442/
http://ieeexplore.ieee.org/document/7312442/
https://doi.org/10.1145/2508859.2516749

References

url: http://dl.acm.org/citation.cfm?doid=2508859.2516749 (visited on
03/15/2022).

[12] Jose Nazario and Thorsten Holz. “As the net churns: Fast-flux botnet observations”.
In: 2008 3rd International Conference on Malicious and Unwanted Software (MAL-
WARE). 2008 3rd International Conference on Malicious and Unwanted Software
(MALWARE). Fairfax, VI: IEEE, Oct. 2008, pp. 24–31. isbn: 978-1-4244-3288-2.
doi: 10.1109/MALWARE.2008.4690854. url: https://ieeexplore.ieee.org/
document/4690854/ (visited on 03/15/2022).

[13] Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to
2030. Statista Inc. Dec. 2020. url: https://www.statista.com/statistics/
1183457/iot-connected-devices-worldwide/ (visited on 11/11/2021), archived
at https://web.archive.org/web/20211025185804/https://www.statista.
com/statistics/1183457/iot-connected-devices-worldwide/ on Oct. 25,
2021.

[14] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to the Web.
Jan. 29, 1998. url: http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
(visited on 11/30/2021).

[15] Nick Pantic and Mohammad I. Husain. “Covert Botnet Command and Control Using
Twitter”. In: Proceedings of the 31st Annual Computer Security Applications Confer-
ence on - ACSAC 2015. the 31st Annual Computer Security Applications Conference.
Los Angeles, CA, USA: ACM Press, 2015, pp. 171–180. isbn: 978-1-4503-3682-6.
doi: 10.1145/2818000.2818047. url: http://dl.acm.org/citation.cfm?
doid=2818000.2818047 (visited on 03/15/2022).

[16] Daniel Stutzbach and Reza Rejaie. “Understanding Churn in Peer-to-Peer Networks”.
In: Proceedings of the 6th ACM SIGCOMM on Internet Measurement - IMC ’06.
The 6th ACM SIGCOMM. Rio de Janeriro, Brazil: ACM Press, 2006, p. 189. isbn:
978-1-59593-561-8. doi: 10.1145/1177080.1177105. url: http://portal.
acm.org/citation.cfm?doid=1177080.1177105 (visited on 03/08/2022).

[17] Junjie Zhang et al. “Building a Scalable System for Stealthy P2P-Botnet Detection”.
In: IEEE Transactions on Information Forensics and Security 9.1 (Jan. 2014), pp. 27–
38. issn: 1556-6013, 1556-6021. doi: 10.1109/TIFS.2013.2290197. url: http:
//ieeexplore.ieee.org/document/6661360/ (visited on 11/09/2021).

24

http://dl.acm.org/citation.cfm?doid=2508859.2516749
https://doi.org/10.1109/MALWARE.2008.4690854
https://ieeexplore.ieee.org/document/4690854/
https://ieeexplore.ieee.org/document/4690854/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://web.archive.org/web/20211025185804/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://web.archive.org/web/20211025185804/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
https://doi.org/10.1145/2818000.2818047
http://dl.acm.org/citation.cfm?doid=2818000.2818047
http://dl.acm.org/citation.cfm?doid=2818000.2818047
https://doi.org/10.1145/1177080.1177105
http://portal.acm.org/citation.cfm?doid=1177080.1177105
http://portal.acm.org/citation.cfm?doid=1177080.1177105
https://doi.org/10.1109/TIFS.2013.2290197
http://ieeexplore.ieee.org/document/6661360/
http://ieeexplore.ieee.org/document/6661360/

List of Figures

List of Figures

1 Communication paths in different types of botnets 5
2 Timeline of crawler events as seen from a peer when crawled by a single

crawler . 12
3 Timeline of crawler events as seen from a peer when crawled by multiple

crawlers . 13
4 Differences in graph metrics . 15
5 SensorRank distribution with initial rank ∀v ∈ V : PR(v) = 0.25 16
6 SensorRank distribution with initial rank ∀v ∈ V : PR(v) = 0.5 17
7 SensorRank distribution with initial rank ∀v ∈ V : PR(v) = 0.75 18
8 Architecture of the new crawler . 20

25

List of Tables

List of Tables

1 Values for metrics from Figure 4 (a/b) 16
2 Values for PageRank iterations with initial rank ∀v ∈ V : PR(v) = 0.25 . . 16
3 Values for PageRank iterations with initial rank ∀v ∈ V : PR(v) = 0.5 . . . 17
4 Values for PageRank iterations with initial rank ∀v ∈ V : PR(v) = 0.75 . . 17

26

Acronyms

Acronyms

AS autonomous system

BMS Botnet Monitoring System

C2 command and control

DDoS distributed denial of service

DNS domain name system

gRPC gRPC remote procedure call

IoT internet of things

IRC internet relay chat

P2P peer-to-peer

SPOF single point of failure

WCC weakly connected component

27

Erklärung

1. Mir ist bekannt, dass dieses Exemplar der Masterthesis als Prüfungsleistung in das
Eigentum der Ostbayerischen Technischen Hochschule Regensburg übergeht.

2. Ich erkläre hiermit, dass ich diese Masterthesis selbstständig verfasst, noch nicht an-
derweitig für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als solche gekenn-
zeichnet habe.

Ort, Datum und Unterschrift

Presented by: Valentin Brandl
Student ID: 3220018
Study Programme: Master Informatik
Supervisor: Prof. Dr. Christoph Skornia
Secondary Supervisor: Prof. Dr. Thomas Waas

	Introduction
	Motivation
	Formal Model of a P2P Botnet
	Detection Techniques for P2P Botnets
	Detection Criteria

	Methodology
	Protocol Primitives

	Coordination Strategies
	Load Balancing
	Reduction of Request Frequency
	Working Against Suspicious Graph Metrics

	Implementation
	Further Work
	Acronyms

