
MASTERTHESIS

Valentin Brandl

Collaborative Monitoring of P2P Botnets

25th April 2022

Faculty: Informatik und Mathematik
Study Programme: Master Informatik
Deadline: 2022-05-01
Supervisor: Prof. Dr. Christoph Skornia
Secondary Supervisor: Prof. Dr. Thomas Waas
External Supervisor: Leon Böck

Botnets pose a huge risk to general internet infrastructure and ser-
vices. Distributed P2P topologies make those botnets harder to detect,
and more resilient to take-down attempts. To take a Peer-to-Peer (P2P)
botnet down, it has to be monitored to estimate the size and learn about
the network topology. With the growing damage and monetary value
produced by such botnets, ideas emerged on how to detect and pre-
vent monitoring activity in the network. This work explores ways to
make monitoring of fully distributed botnets more efficient, resilient,
and harder to detect, by using a collaborative, coordinated approach.
Further, we show how the coordinated approach helps in circumventing
anti-monitoring techniques deployed by botnets. do me

Keywords— P2P, botnet, monitoring, collaboration

2

Contents

Contents

1 Introduction 5

2 Background 8
2.1 Formal Model of P2P Botnets . 9
2.2 Monitoring Techniques for P2P Botnets 10

2.2.1 Passive Monitoring . 10
2.2.2 Active Monitoring . 11
2.2.3 Anti-Monitoring Techniques 12

2.3 Related Work . 12

3 Methodology 14
3.1 Protocol Primitives . 15

4 Coordination Strategies 17
4.1 Load Balancing . 17

4.1.1 Round Robin Distribution . 18
4.1.2 IP-based Partitioning . 20

4.2 Reduction of Request Frequency . 21
4.3 Creating and Reducing Edges for Sensors 22

5 Evaluation 26
5.1 Load Balancing . 26
5.2 Reduction of Request Frequency . 30
5.3 Impact of Additional Edges on Graph Metrics 33

5.3.1 Use Other Known Sensors . 33
5.3.2 Effectiveness against SensorBuster 35

5.4 Reducing Incoming Edges to Reduce Page- and SensorRank 36

6 Implementation 43

7 Conclusion 46

8 Further Work 47

3

Contents

List of Figures 49

List of Tables 50

List of Listings 51

List of Acronyms 52

References 53

4

1 Introduction

1 Introduction

The Internet has become an irreplaceable part of our day-to-day lives. We are always
connected via numerous “smart” and Internet of Things (IoT) devices. We use the Internet
to communicate, shop, handle financial transactions, and much more. Many personal
and professional workflows are so dependent on the Internet, that they won’t work when
being offline, and with the pandemic, we are living through, this dependency grew even
stronger.

In 2021, there were around 10 billion Internet-connected IoT devices and this number is
estimated to more than double over the next years up to 25 billion in 2030 [21]. Many
of these devices run on outdated software, don’t receive regular updates, and don’t follow
general security best practices. While in 2016 only 77 % of German households had a
broadband connection with a bandwidth of 50 MBit/s or more, in 2020 it was already 95 %
with more than 50 MBit/s and 59 % with at least 1000 MBit/s [4]. Their nature as small, always
online devices—often without any direct user interaction—behind Internet connections that
are getting faster and faster makes them a desirable target for botnet operators.

A botnet is a network of malware-infected computers, called bots, controlled by a botmas-
ter. Botnets are controlled via a Command and Control (C2) channel. The communication
patterns of a C2 channel can be centralized, decentralized, or distributed. Centralized or
decentralized botnets use one or more coordinating hosts to contact and receive new com-
mands. Distributed botnets create a P2P network as their communication layer. The C2
channel for centralized and decentralized botnets can use anything from Internet Relay
Chat (IRC) over HTTP to Twitter [23].

In recent years, IoT botnets have been responsible for some of the biggest Distributed Denial
of Service (DDoS) attacks ever recorded—creating up to 1 TBit/s of traffic [10]. Other
malicious use of bots includes several activities—DDoS attacks, banking fraud, proxies to
hide the attacker’s identity, and sending of spam emails, just to name a few.

The constantly growing damage produced by botnets has many researchers and law en-
forcement agencies trying to shut down these operations [18, 17, 8, 7]. A coordinated

5

1 Introduction

operation with help from law enforcement, hosting providers, domain registrars, and plat-
form providers could shut down or take over the operation by changing how requests are
routed or simply shutting down the controlling servers/accounts.

The monetary value of these botnets directly correlates with the amount of effort botmas-
ters are willing to put into implementing defense mechanisms against take-down attempts.
Botnet operators came up with a number of ideas: Domain Generation Algorithms use
pseudorandomly generated domain names to render simple domain blacklist-based ap-
proaches ineffective [3] or fast-flux DNS entries, where a large pool of IP addresses is
randomly assigned to the C2 domains to prevent IP based blacklisting and hide the actual
C2 servers [20]. Analyzing and shutting down a centralized or decentralized botnet is com-
paratively easy since the central means of communication (the C2 IP addresses or domain
names, Twitter handles, or IRC channels), can be extracted from the malicious binaries or
determined by analyzing network traffic and can therefore be considered publicly known.
A number of botnet operations were taken down by shutting down the C2 channel [18,
12] and as the defenders upped their game, so did attackers—the concept of P2P botnets
emerged. The idea is to build a distributed network without Single Points of Failure (SPoF)
in the form of C2 servers as shown in Figure 1b.

C21

8

7

2

5

6

4

3

(a) Topology of a C2 controlled botnet

1

8

7

2

5

6

4

3

(b) Topology of a P2P botnet

Figure 1: Communication paths in different types of botnets

6

1 Introduction

This lack of a SPoF makes P2P botnets more resilient to take-down attempts since there
is no easy way to stop the communication and botmasters can easily rejoin the network
and send new commands.

Taking down a P2P botnet requires intricate knowledge of the botnet’s characteristics,
e.g. size, risk, distribution over IP subnets or geolocations, network topology, participating
peers, and protocol characteristics. Just like for centralized and decentralized botnets, to
take down a P2P botnet, the C2 channel needs to be identified and disrupted. By mon-
itoring peer activity of known participants in the botnet, this knowledge can be obtained
and used to find attack vectors in the botnet protocol.

In this work, we will show how a collaborative system of crawlers and sensors can make
the monitoring and information gathering phase of a P2P botnet more efficient, resilient
to detection and how collaborative monitoring can help circumvent anti-monitoring tech-
niques.

7

2 Background

2 Background

In a P2P botnet, each node in the network knows a number of its neighbors and connects
to those. Each of these neighbors has a list of neighbors on its own, and so on. The
botmaster only needs to join the network to send new commands or receive stolen data
but there is no need for a coordinating host, that is always connected to the network. Any
of the nodes in Figure 1b could be the botmaster but they don’t even have to be online all
the time since the peers will stay connected autonomously. In fact, there have been arrests
of P2P botnet operators but due to the autonomy offered by the distributed approach, the
botnet keeps intact and continues operating [27]. Especially worm-like botnets, where each
peer tries to actively find and infect other systems, can keep lingering for many years.

Bots in a P2P botnet can be split into two distinct groups according to their reachability:
peers that are not publicly reachable (e.g. because they are behind a Network Access
Translation (NAT) router or firewall) and those, that are publicly reachable, also known
as superpeers. In contrast to centralized botnets with a fixed set of C2 servers, in a P2P
botnet, every superpeer might take the role of a C2 server and non-superpeers will connect
to those superpeers when joining the network.

As there is no well-known server in a P2P botnet, they have to coordinate autonomously.
This is achieved by connecting the bots among each other. Bot B is considered a neighbor
of bot A, if A knows and connects to B. Since bots can go offline can become unavail-
able (e.g. because the system was shut down or the malware infection was detected and
removed), they have to consistently update their neighbor lists to avoid losing their connec-
tion into the botnet. This is achieved by periodically querying their neighbor’s neighbors
in a process known as Membership Management (MM).

MM can be distinguished into two categories: structured and unstructured [5]. Structured
P2P botnets have strict rules for a bot’s neighbors based on its unique ID and often use a
Distributed Hash Table (DHT), which allows persisting data in a distributed network. The
DHT could contain an ordered ring structure of IDs and neighborhood in the structure also
means neighborhood in the network, as is the case in the Kademila botnet [16]. In P2P
botnets that employ unstructured MM, on the other hand, bots ask any peer they know
for new peers to connect to, in a process called peer discovery. To enable peers to join a

8

2 Background

unstructured P2P botnets, the malware binaries include hardcoded lists of superpeers for
the newly infected systems to connect to.

The concept of churn describes when a bot becomes unavailable. There are two types of
churn:

• IP churn: A bot becomes unreachable because it got assigned a new IP address. The
bot is still available but under another IP address.

• Device churn: The device is actually offline, e.g. because the infection was cleaned,
it got shut down or lost its Internet connection.

2.1 Formal Model of P2P Botnets

A P2P botnet can be modeled as a digraph

G = (V,E)

With the set of nodes V describing the peers in the network and the set of edges E
describing the communication flow between bots.

G is not required to be a connected graph but might consist of multiple disjoint compo-
nents [24]. Components consisting of peers, that are infected by the same malware, are
considered part of the same graph.

For a bot v ∈ V , the predecessors pred(v) and successors (neighbors) succ(v) are defined
as:

succ(v) = {u ∈ V | (v, u) ∈ E}

pred(v) = {u ∈ V | (u, v) ∈ E}

9

2 Background

The set of nodes succ(v) is also called the peer list of v. Those are the nodes, a peer will
connect to, to request new commands and other peers.

For a node v ∈ V , the in and out degree deg+ and deg− describe how many bots know v

or are known by v respectively.

deg+(v) = |pred(v)|

deg−(v) = |succ(v)|

2.2 Monitoring Techniques for P2P Botnets

There are two distinct methods to map and get an overview of the network topology of a
P2P botnet:

2.2.1 Passive Monitoring

For passive detection, traffic flows in large amounts of collected network traffic often
obtained from Internet Service Providers or network telescopes [15] are analyzed. This
has some advantages: e.g. it is not possible for botmasters to detect or prevent data-
collection of that kind, though it is not trivial to distinguish valid P2P application traffic
(e.g. BitTorrent, Skype, cryptocurrencies, . . .) from P2P bots. Zhang et al. propose
a system of statistical analysis to solve some of these problems in “Building a Scalable
System for Stealthy P2P-Botnet Detection” [28]. Also getting access to the required
datasets might not be possible for everyone.

Like most botnet detection mechanisms, also the passive ones work by building communica-
tion graphs and finding tightly coupled subgraphs that might be indicative of a botnet [19].
An advantage of passive detection is, that it is independent of protocol details, specific
binaries, or the structure of the network (P2P vs. centralized/decentralized) [11].

10

2 Background

Passive monitoring is only mentioned for completeness and not further discussed in this
thesis.

2.2.2 Active Monitoring

For active detection, a subset of the botnet protocol and behavior is reimplemented to
participate in the network. To do so, samples of the malware are reverse engineered to
understand and recreate the protocol. This partial implementation includes the communi-
cation part of the botnet but ignores the malicious functionality to not support and take
part in illicit activity.

There are two subtypes of active detection: sensors wait to be contacted by other peers,
while crawlers actively query known bots and recursively ask for their neighbors [14].
Crawlers can only detect superpeers and therefore only see a small subset of the network,
while sensors are also contacted by peers in private networks and behind firewalls. To
accurately monitor a P2P botnet, a hybrid approach of crawlers and sensors is required.

A crawler starts with a predefined list of known bots, connects to those, and uses the peer
exchange mechanism to request other bots. Each found bot is crawled again, slowly building
the graph of superpeers on the way. Every entry E in the peer exchange response received
from bot A represents an edge from A to E in the graph. “Reliable Recon in Adversarial
Peer-to-Peer Botnets” describes disinformation attacks, in which bots will include invalid
entries in their peer list replies [1]. Therefore, edges should only be considered valid, if at
least one crawler or sensor was able to contact or contacted by peer E, thereby confirming,
that E is an existing participant in the botnet.

A sensor implements the passive part of the botnet’s MM. It is populated into the network
by crawlers or other sensors and waits for other peers to contact them. They cannot be
used to create the botnet graph (only edges into the sensor node) or find new peers, but
are required to enumerate the whole network, including non-superpeers.

11

2 Background

2.2.3 Anti-Monitoring Techniques

Andriesse, Rossow, and Bos explore some monitoring countermeasures in “Reliable Recon
in Adversarial Peer-to-Peer Botnets”. These include deterrence, which limits the number of
bots per IP address or subnet; blacklisting, where known crawlers and sensors are blocked
from communicating with other bots in the network (mostly IP based); disinformation,
when fake bots are placed in the peer lists, to invalidate the data collected by crawlers;
and active retaliation like DDoS attacks against sensors or crawlers [1].

2.3 Related Work

In “BoobyTrap” [13], the authors evaluate criteria to detect monitoring attempts in a P2P
botnet:

Defiance Peers that don’t abide by the MM protocol rules are most likely crawlers or
sensors, e.g. peers that query other peers that shouldn’t be in their neighborhood
according to geolocation or IP subnet rules.

Abuse Higher MM frequency as an indicator for a sensor or crawler

Avoidance Peers that avoid aiding the botnet, e.g. by returning empty replies on MM
requests are potential monitoring nodes

“SensorBuster” explores graph ranking algorithms to detect monitoring activity in a P2P
botnet. They depend on suspicious graph properties to enumerate candidate peers [14].

PageRank The algorithm used by Google to rank their search results uses the ratio of
deg+ and deg− to detect sensors since they have many incoming but few outgoing
edges [22]

SensorRank A deviation of PageRank that normalizes the result, to better account for
churn and valid peers with few high-ranked predecessors but only a few successors

12

2 Background

SensorBuster evaluates Weakly Connected Component (WCC) in a graph since sensors
have only incoming but no outgoing edges, thereby creating a disconnected graph
component

Botnet Monitoring System (BMS)1is a monitoring platform for P2P botnets described by
Böck et al. in “Challenges of Accurately Measuring Churn in P2P Botnets”. BMS is
intended for a hybrid active approach of crawlers and sensors (reimplementations of the
P2P protocol of a botnet, that won’t perform malicious actions) to collect live data from
active botnets.

In an earlier project, we implemented different graph ranking algorithms—among others
PageRank [22] and SensorRank—to detect sensor candidates in a botnet, as described in
“SensorBuster”.

1https://github.com/Telecooperation/BMS

13

https://github.com/Telecooperation/BMS

3 Methodology

3 Methodology

The implementation of the concepts of this work will be done as part of BMS. The goal
of this work is to complicate detection and anti-monitoring mechanisms for botmasters
by coordinating the work of the system’s crawlers and sensors. The coordinated work
distribution also helps in efficiently monitoring large botnets where one crawler is not
enough to track all peers. The changes should allow the current BMS crawlers and sensors
to use the new implementation with as few changes as possible to the existing code.

We will explore how cooperative monitoring of a P2P botnet can help with the following
problems:

• Impede detection of monitoring attempts by reducing the impact of aforementioned
graph metrics

• Circumvent anti-monitoring techniques

• Make crawling more efficient

The final results should be as general as possible and not depend on any botnet’s specific
behavior (except for the mentioned anti-monitoring techniques which might be unique to
some botnets), but we assume that every P2P botnet has some way of querying a bot’s
neighbors for the concept of crawlers and sensors to be applicable.

In the current implementation, each crawler will itself visit and monitor each new node it
finds. The general idea for the implementation of the concepts in this thesis is to report
newfound nodes back to the BMS backend first, where the graph of the known network is
created, and a fitting worker is selected to achieve the goal of the according coordination
strategy. That worker will be responsible to monitor the new node.

If it is not possible to select a sensor so that the monitoring activity stays inconspicuous,
the coordinator can do a complete shuffle of all nodes between the sensors to restore the
wanted graph properties or warn if more sensors are required to fulfill the goal defined by
the strategy.

14

3 Methodology

The improved crawler system should allow new crawlers to register themselves and their
capabilities (e.g. bandwidth, geolocation), so the amount of work can be scaled accordingly
between hosts.

3.1 Protocol Primitives

The coordination protocol must allow the following operations:

Register Worker Register a new worker with capabilities (which botnet, the available
bandwidth and processing power, if it is a crawler or sensor, . . .). This is called
periodically and used to determine which worker is still active when assigning new
tasks.

Report Peer Report found peers. Both successful and failed attempts are reported, to
detect churned peers, and blacklisted crawlers as soon as possible.

Report Edge Report found edges. Edges are created by querying the peer list of a bot.
This is how new peers are detected.

Request Tasks Receive a batch of crawl tasks from the coordinator. The tasks consist
of the target peer, if the worker should start or stop monitoring the peer, when
the monitoring should start and stop and at which frequency the peer should be
contacted.

Request Neighbors Sensors can request a list of candidate peers to return when their
peer list is queried.

15

3 Methodology

type Peer struct {
BotID string
IP string
Port uint16

}
type PeerTask struct {

Peer Peer
StartAt *Time
StopAt *Time
Frequency uint
StopCrawling bool

}

Listing 1: Relevant Fields for Peers and Tasks

Listing 1 shows the Go structures used for crawl tasks.

16

4 Coordination Strategies

4 Coordination Strategies

Let C be the set of available crawlers. Without loss of generality, if not stated otherwise,
we assume that C is known when BMS is started and will not change afterward. There will
be no joining or leaving crawlers. This assumption greatly simplifies the implementation
due to the lack of changing state that has to be tracked while still exploring the described
strategies. A production-ready implementation of the described techniques can drop this
assumption but might have to recalculate the work distribution once a crawler joins or
leaves. The protocol primitives described in Section 3.1 already allow for this to be imple-
mented by first creating tasks with the StopCrawling flag set to true for all active tasks,
running the strategy again, and creating the according tasks to start crawling again.

4.1 Load Balancing

Depending on a botnet’s size, a single crawler is not enough to monitor all superpeers.
While it is possible to run multiple, uncoordinated crawlers, two or more of them can find
and monitor the same peer, making the approach inefficient with regard to the computing
resources at hand.

The load balancing strategy solves this problem by systematically splitting the crawl tasks
into chunks and distributing them among the available crawlers. The following load bal-
ancing strategies will be investigated:

Round Robin Evenly distribute the peers between crawlers in the order they are found

IP-based partitioning Use the uniform distribution of cryptographic hash functions to
assign peers to crawlers in a random manner but still evenly distributed

Load balancing in itself does not help prevent the detection of crawlers but it allows
better usage of available resources. It prevents unintentionally crawling the same peer with
multiple crawlers and allows crawling of bigger botnets where the uncoordinated approach
would reach its limit and could only be worked around by scaling up the machine where the
crawler is executed. Load balancing allows scaling out, which can be more cost-effective.

17

4 Coordination Strategies

4.1.1 Round Robin Distribution

This strategy distributes work evenly among crawlers by either naively assigning tasks to the
crawlers rotationally or weighted according to their capabilities. To keep the distribution
as even as possible, we keep track of the last crawler a task was assigned to and start
with the next in line in the subsequent round of assignments. For the sake of simplicity,
only the bandwidth will be considered as a capability but it can be extended by any shared
property between the crawlers, e.g. available memory or processing power. For a given
crawler ci ∈ C let cap(ci) be the capability of the crawler. The total available capability is
B = ∑

c∈C
cap(c). With G being the greatest common divisor of all the crawler’s capabilities,

the weight of a crawler is W (ci) = cap(ci)
G . cap(ci)

B gives us the percentage of the work a
crawler is assigned. The algorithm in Listing 2 distributes the work according to the
crawler’s capabilities.

18

4 Coordination Strategies

func WeightCrawlers(crawlers ...Crawler) map[string]uint {
weights := []int{}
totalWeight := 0
for _, crawler := range crawlers {

totalWeight += crawler.Bandwith
weights = append(weights, crawler.Bandwith)

}
gcd := Fold(Gcd, weights...)
weightMap := map[string]uint{}
for _, crawler := range crawlers {

weightMap[crawler.ID] = uint(crawler.Bandwith / gcd)
}
return weightMap

}

func WeightedCrawlerList(crawlers ...Crawler) []string {
weightMap := WeightCrawlers(crawlers...)
didSomething := true
crawlerIds := []string{}
for didSomething {

didSomething = false
for k, v := range weightMap {

if v != 0 {
didSomething = true
crawlerIds = append(crawlerIds, k)
weightMap[k] -= 1

}
}

}
return crawlerIds

}

Listing 2: Pseudocode for weighted round-robin

This creates a list of crawlers where a crawler can occur more than once, depending on
its capabilities. To ensure better distribution, first, every crawler is assigned one task,

19

4 Coordination Strategies

then, according to the capabilities, every crawler with a weight of 2 or more is assigned a
task, repeating this process until all tasks are assigned. The set of crawlers {a, b, c} with
the capabilities cap(a) = 3, cap(b) = 2, cap(c) = 1 would produce < a, b, c, a, b, a >,
allocating two and three times the work to crawlers b and a respectively.

4.1.2 IP-based Partitioning

The output of cryptographic hash functions is uniformly distributed. Given the hash func-
tion H, calculating the hash of an IP address and distributing the work with regard to
H(IP) mod |C| creates almost evenly sized buckets for each worker to handle. This gives
us the mapping m(i) = H(i) mod |C| to sort peers into buckets.

Any hash function can be used but since it must be calculated often, a fast function should
be used. While the Message-Digest Algorithm 5 (MD5) hash function must be considered
broken for cryptographic use [25], it is faster to calculate than hash functions with longer
output. Collisions for MD5 have been found but collision resistance is not required. For
the use case at hand, only the uniform distribution property is required so MD5 can be
used without scarifying any kind of security.

This strategy can also be weighted using the crawlers’ capabilities by modifying the list of
available workers so that a worker can appear multiple times according to its weight. The
weighting algorithm from Listing 2 is used to create the weighted multiset of crawlers CW

and the mapping changes to m(i) = H(i) mod |CW |.

MD5 returns a 128 Bit hash value. The Go standard library includes helpers for arbitrarily
sized integers2. This helps us in implementing the mapping m from above.

By exploiting the even distribution offered by hashing, the work of each crawler is also about
evenly distributed over all IP subnets, Autonomous Systems (ASs), and geolocations. This
ensures neighboring peers (e.g. in the same AS, geolocation, or IP subnet) get visited by
different crawlers. It also allows us to get rid of the state in our strategy since we don’t
have to keep track of the last crawler we assigned a task to, making it easier to implement
and reason about.

2https://pkg.go.dev/math/big#Int

20

https://pkg.go.dev/math/big#Int

4 Coordination Strategies

4.2 Reduction of Request Frequency

The GameOver Zeus botnet limited the number of requests a peer was allowed to perform
and blacklisted peers, that exceeded the limit, as an anti-monitoring mechanism [2]. In an
uncoordinated crawler approach, the crawl frequency has to be limited to prevent hitting
the request limit.

10 20 30 40 50 60
C 0 C 0 C 0 C 0

Figure 2: Timeline of requests as received by a peer when crawled by a single
crawler

Using collaborative crawlers, an arbitrarily fast frequency can be achieved without being
blacklisted. With l ∈ N being the maximum allowed frequency as defined by the botnet’s
protocol, f ∈ N being the crawl frequency that should be achieved. The number of crawlers
n required to achieve the frequency f without being blacklisted and the offset o between
crawlers are defined as

n =
⌈
f

l

⌉
o = 1 req

f

Taking advantage of the StartAt field from the PeerTask returned by the requestTasks
primitive above, the crawlers can be scheduled offset by o at a frequency l to ensure, the
overall requests to each peer are evenly distributed over time.

Given a limit l = 6 req/min, crawling a botnet at f = 24 req/min requires n =
⌈

24 req/min
6 req/min

⌉
= 4

crawlers. Those crawlers must be scheduled o = 1 req
24 req/min

= 2.5 s apart at a frequency of l
to evenly distribute the requests over time.

As can be seen in Figure 3, each crawler C0 to C3 performs only 6 req/min while overall
achieving 24 req/min.

21

4 Coordination Strategies

10 20 30 40 50 60
C 0 C 0 C 0 C 0 C 0 C 0 C 0C 1 C 1 C 1 C 1 C 1 C 1C 2 C 2 C 2 C 2 C 2 C 2C 3 C 3 C 3 C 3 C 3 C 3

Figure 3: Timeline of crawler events when optimized for effective frequency

Vice versa, given an amount of crawlers n and a request limit l, the effective frequency f
can be maximized to f = n× l without hitting the limit l and being blocked.

Using the example from above with l = 6 req/min but now only two crawlers n = 2, it
is still possible to achieve an effective frequency of f = 2 × 6 req/min = 12 req/min with
o = 1 req

12 req/min
= 5 s:

10 20 30 40 50 60
C 0 C 0 C 0 C 0 C 0 C 0 C 0C 1 C 1 C 1 C 1 C 1 C 1

Figure 4: Timeline of crawler events when optimized over the number of crawlers

While the effective frequency of the whole system is halved compared to Figure 3, it is still
possible to double the effective frequency over the limit.

4.3 Creating and Reducing Edges for Sensors

“SensorBuster: On Identifying Sensor Nodes in P2P Botnets” describes different graph
metrics to find sensors in P2P botnets. These metrics depend on the uneven ratio between
incoming and outgoing edges for sensors. The SensorBuster metric uses WCCs since naive
sensors don’t have any edges back to the main network in the graph.

With v ∈ V , succ(v) being the set of successors of v and pred(v) being the set of prede-
cessors of v, PageRank is recursively defined as [22]:

22

4 Coordination Strategies

PR0(v) = initialRank

PRn+1(v) = dampingFactor×
∑

p∈pred(v)

PRn(p)
|succ(p)| + 1− dampingFactor

|V |

For the first iteration, the PageRank of all nodes is set to the same initial value. Page
et al. argue that when iterating often enough, any value can be chosen [22].

The dampingFactor describes the probability of a person visiting links on the web to con-
tinue doing so when using PageRank to rank websites in search results. For simplicity—and
since it is not required to model human behavior for automated crawling and ranking—a
dampingFactor of 1.0 will be used, which simplifies the formula to

PRn+1(v) =
∑

p∈pred(v)

PRn(p)
|succ(p)|

Based on this, SensorRank is defined as

SR(v) = PR(v)
|succ(v)| ×

|pred(v)|
|V |

Since crawlers never respond to peer list requests, they will always be detectable by the
described approach but sensors might benefit from the following technique.

The PageRank and SensorRank metrics are calculated over the sum of the ranks of a node’s
predecessors. We will investigate, how limiting the number of predecessors helps produce
inconspicuous ranks for a sensor.

To counter the SensorBuster metric, outgoing edges to valid peers from the botnet are
required so the sensor does not build a WCC. The challenge here is deciding which peers
can be returned without actually supporting the network. The following candidates to place
on the neighbor list will be investigated:

23

4 Coordination Strategies

• Return the other known sensors, effectively building a complete graphK|C| containing
all sensors

• Detect churned peers from AS with dynamic IP allocation

• Detect peers behind carrier-grade NAT that rotate IP addresses very often and pick
random IP addresses from the IP range

Other Sensors: Returning all the other sensors when responding to peer list requests,
thereby effectively creating a complete graph K|C| among the workers, creates valid out-
going edges. The resulting graph will still form a WCC with now edges back into the main
network.

Building a complete graph GC = K|C| between the sensors by making them return the
other known worker on peer list requests would still produce a disconnected component
and while being bigger and maybe not as obvious at first glance, it is still easily detectable
since there is no path from GC back to the main network (see Figure 8b and Table 4).

Churned peers after IP rotation: Churn describes the dynamics of peer participation
in P2P systems, e.g. join and leave events [26]. Detecting if a peer just left the system,
in combination with knowledge about ASs, peers that just left and came from an AS with
dynamic IP allocation (e.g. many consumer broadband providers in the US and Europe),
can be placed into the crawler’s peer list. If the timing of the churn event correlates with
IP rotation in the AS, it can be assumed, that the peer left due to being assigned a new IP
address—not due to connectivity issues or going offline—and will not return using the same
IP address. These peers, when placed in the peer list of the crawlers, will introduce paths
back into the main network and defeat the WCC metric. It also helps with the PageRank
and SensorRank metrics since the crawlers start to look like regular peers without actually
supporting the network by relaying messages or propagating active peers.

Peers behind carrier-grade NAT: Some peers show behavior, where their IP address
changes almost after every request. Those peers can be used as fake neighbors and create
valid-looking outgoing edges for the sensor.

In theory, it would be possible to detect churned peers or peers behind carrier-grade NAT,
without coordinating the sensors but the coordination gives us a few advantages:

24

4 Coordination Strategies

• A peer might blacklist a sensor that looks exactly the same as a churned peer from
the point of view of an uncoordinated sensor. The coordination backend has more
knowledge and can detect this if another sensor is still contacted by the peer in
question.

• The coordination backend can include different streams of information to decide
which peers to place in the sensor’s neighborhood. Knowledge about geolocations,
AS and their IP rotation behavior can be consulted to make better-informed choices
for neighborhood candidates.

25

5 Evaluation

5 Evaluation

To evaluate the strategies from above, we took a snapshot of the Sality [9] botnet obtained
from BMS throughout of 21st to 28th April 2021, if not stated otherwise.

5.1 Load Balancing

To evaluate the real-world applicability of IP based partitioning, we will partition the dataset
containing 1595 distinct IP addresses among 2, 4, 6, and 10 crawlers and verify if the work
is about evenly distributed between crawlers.

We will compare the variance σ2 and standard deviation σ to evaluate the applicability of
this method.

26

5 Evaluation

Fi
gu

re
5:

IP
ba
se
d
pa
rti
tio

ni
ng

27

5 Evaluation

n µ σ2 σ σ
µ

2 797.5 110.2 10.5 1.3%
4 398.8 328.2 18.1 4.5%
6 265.8 197.1 14.0 5.3%

10 159.5 196.4 14.0 8.8%

Table 1: Variance and standard deviation for IP-based partitioning on 1595 IP ad-
dresses

Table 1 shows that the deviation from the expected even distribution is within 10 %. Since
the used sample is not very big, according to the law of big numbers we would expect the
deviation to get smaller, the bigger the sample gets. Therefore, we simulate the partitioning
on a bigger sample of 1,000,000 random IP addresses.

28

5 Evaluation

Fi
gu

re
6:

IP
ba
se
d
pa
rti
tio

ni
ng

fo
rc

ra
wl
er
so

n
ge
ne
ra
te
d
da
ta
se
t

29

5 Evaluation

n µ σ2 σ σ
µ

2 500,000.0 459,684.0 678.0 0.14%
4 250,000.0 133,517.5 365.4 0.15%
6 166,666.7 62,069.9 249.1 0.15%

10 100,000.0 172,987.4 415.9 0.42%

Table 2: Variance and standard deviation for IP-based partitioning on 1,000,000 IP
addresses

As expected, the work is still not perfectly distributed among the crawlers but evenly enough
for our use case. The deviation for larger botnets is expected to be within 0.5 % of the
even distribution. This is good enough for balancing the tasks among workers.

5.2 Reduction of Request Frequency

To evaluate the request frequency optimization described in Section 4.2, we crawl a simu-
lated peer and check if the requests are evenly distributed and how big the deviation from
the theoretically optimal result is. To get more realistic results, the crawlers and simulated
peer are running on different machines so they are not within the same LAN. We use the
same parameters as in the example above:

n = 4

l = 6 req/min

f = 24 req/min

o = 2.5 s

To recap, this is what the optimal timeline would look like:

10 20 30 40 50 60
C 0 C 0 C 0 C 0 C 0 C 0 C 0C 1 C 1 C 1 C 1 C 1 C 1C 2 C 2 C 2 C 2 C 2 C 2C 3 C 3 C 3 C 3 C 3 C 3

30

5 Evaluation

The ideal distribution would be 2.5 s between every two events. Due to network latency
and load from crawling other peers, we expect the actual result to deviate from the optimal
value over time. With this experiment, we try to estimate the impact of the latency.

31

5 Evaluation

Fi
gu

re
7:

De
riv

at
ion

fro
m

th
e
ex
pe
ct
ed

in
te
rv
al

pe
rc

ra
wl
er

32

5 Evaluation

Crawler Average Deviation
c0 0.0003166149207321755
c1 0.0002065727194268201
c2 0.0003075813840032066
c3 0.0038056359425696364

Table 3: Average deviation per crawler

The monitored peer and crawler c0 are located in Falkenstein, Germany, c1 in Nurnberg,
Germany, c2 is in Helsinki, Finland and c3 in Ashburn, USA, to have some geographic
distribution.

The average deviation per crawler is below 0.002 s even with some outliers due to network
latency or server load. The crawler c3 in the experiment is the furthest away from the
monitored host therefore the larger derivation due to network latency is expected.

In real-world scenarios, crawlers will monitor more than a single peer and the scheduling
is expected to be less accurate. Still, the deviation will always stay below the effective
frequency f , because after exceeding f , a crawler is overtaken by the next in line. The
impact of the deviation when crawling real-world botnets has to be investigated and if it
shows to be a problem, the tasks have to be rescheduled periodically to prevent this from
happening.

5.3 Impact of Additional Edges on Graph Metrics

5.3.1 Use Other Known Sensors

By connecting the known sensors and effectively building a complete graph K|C| between
them creates |C| − 1 outgoing edges per sensor. In most cases, this won’t be enough to
reach the number of edges that would be needed. Also, this does not help against the
WCC metric since this would create a bigger but still disconnected component.

33

5 Evaluation

c1

C
ra

w
le

rs

c0

c2

R
egular Peers

n0

n1

n2

(a) WCCs for independent crawlers

c1

C
ra

w
le

rs

c0

c2

R
egular Peers

n0

n1

n2

(b) WCCs for collaborated crawlers

Figure 8: Differences in graph metrics

Applying PageRank with an initial rank of 0.25 once on the example graphs in Figure 8
results in:

Node deg+ deg− In WCC? PageRank SensorRank
n0 0/0 4/4 no 0.75/0.5625 0.3125/0.2344
n1 1/1 3/3 no 0.25/0.1875 0.0417/0.0313
n2 2/2 2/2 no 0.5/0.375 0.3333/0.25
c0 3/5 0/2 yes (1/3) 0.0/0.125 0.0/0.0104
c1 1/3 0/2 yes (1/3) 0.0/0.125 0.0/0.0104
c2 2/4 0/2 yes (1/3) 0.0/0.125 0.0/0.0104

Table 4: Values for metrics from Figure 8 (a/b)

While this works for small networks, the crawlers must account for a significant amount of
peers in the network for this change to be noticeable. The generated Kn needs to be at
least as big as the smallest regular component in the botnet, which is not feasible. Also,
if detected, this would leak the information about all known sensors to the botmasters.
The limited scalability, and potential information leak, which might be used by botmasters

34

5 Evaluation

to retaliate against the sensors or the whole monitoring operation, make this approach
unusable in real-world scenarios.

5.3.2 Effectiveness against SensorBuster

SensorBuster relies on the assumption that sensors don’t have any outgoing edges, thereby
creating a disconnected graph component.

1

8

7

2

5

6

4

3

Sensor

(a) Sensor without outgoing edge creates dis-
connected graph component

1

8

7

2

5

6

4

3

Sensor

(b) Single outgoing edge connects sensor
back to the main component

Figure 9b shows how a single valid edge back into the network (from Sensor to peer 3 in
the example) renders the SensorBuster metric ineffective by making the sensor part of the
main graph component.

For the WCC metric, it is obvious that even a single edge back into the main network is
enough to connect the sensor back to the main graph and therefore beat this metric.

35

5 Evaluation

5.4 Reducing Incoming Edges to Reduce Page- and
SensorRank

In this section, we will evaluate how adding outgoing edges to a sensor impacts its PageRank
and SensorRank values. Before doing so, we will check the impact of the initial rank
by calculating it with different initial values and comparing the value distribution of the
result.

Iteration Avg. PR Crawler PR Avg. SR Crawler SR
1 0.24854932 0.63277194 0.15393478 0.56545578
2 0.24854932 0.63277194 0.15393478 0.56545578
3 0.24501068 0.46486353 0.13810930 0.41540997
4 0.24501068 0.46486353 0.13810930 0.41540997
5 0.24233737 0.50602884 0.14101354 0.45219598

Table 5: Values for PageRank iterations with initial rank ∀v ∈ V : PR0(v) = 0.25

(a) Distribution after 1 iteration (b) Distribution after 5 iterations

Figure 10: SensorRank distribution with initial rank ∀v ∈ V : PR0(v) = 0.25

36

5 Evaluation

Iteration Avg. PR Crawler PR Avg. SR Crawler SR
1 0.49709865 1.26554389 0.30786955 1.13091156
2 0.49709865 1.26554389 0.30786955 1.13091156
3 0.49002136 0.92972707 0.27621861 0.83081993
4 0.49002136 0.92972707 0.27621861 0.83081993
5 0.48467474 1.01205767 0.28202708 0.90439196

Table 6: Values for PageRank iterations with initial rank ∀v ∈ V : PR0(v) = 0.5

(a) Distribution after 1 iteration (b) Distribution after 5 iterations

Figure 11: SensorRank distribution with initial rank ∀v ∈ V : PR0(v) = 0.5

Iteration Avg. PR Crawler PR Avg. SR Crawler SR
1 0.74564797 1.89831583 0.46180433 1.69636734
2 0.74564797 1.89831583 0.46180433 1.69636734
3 0.73503203 1.39459060 0.41432791 1.24622990
4 0.73503203 1.39459060 0.41432791 1.24622990
5 0.72701212 1.51808651 0.42304062 1.35658794

Table 7: Values for PageRank iterations with initial rank ∀v ∈ V : PR0(v) = 0.75

37

5 Evaluation

(a) Distribution after 1 iteration (b) Distribution after 5 iterations

Figure 12: SensorRank distribution with initial rank ∀v ∈ V : PR0(v) = 0.75

The distribution graphs in Figure 10, Figure 11, and Figure 12 show that the initial rank
has no effect on the distribution, only on the actual numeric rank values and how far apart
they are spread.

For all combinations of initial value and PageRank iterations, the rank for a well-known
crawler is in the 95th percentile, so for our use case—detecting sensors due to their high
ranks—those parameters do not matter.

Looking at the data in smaller buckets of one hour each, the average number of successors
per peer is 90.

Experiments were performed, in which the incoming edges for the known sensor are reduced
by increasing factors, to see, when the sensor’s rank reaches the overall average.

38

5 Evaluation

Fi
gu

re
13

:I
n-
de
gr
ee
sa

fte
rr

em
ov
in
g
ed
ge
s

39

5 Evaluation

Fi
gu

re
14
:P

ag
eR

an
k
af
te
rr

em
ov
in
g
ed
ge
s

40

5 Evaluation

Fi
gu

re
15

:S
en
so
rR
an
k
af
te
rr

em
ov
in
g
ed
ge
s

41

5 Evaluation

The graphs with 0 removed edges show the situation on the base truth without modifica-
tions.

We can see in Figure 14 and Figure 15, that we have to reduce the incoming edges by
20 % and 30 % respectively to get average values for SensorRank and PageRank. This also
means that the number of incoming edges for a sensor must be about the same as the
average about of incoming edges. Depending on the protocol details of the botnet (e.g.
how many incoming edges are allowed per peer), this means that a large amount of sensors
is needed if we want to monitor the whole network.

42

6 Implementation

6 Implementation

Crawlers in BMS report to the backend using gRPC Remote Procedure Calls (gRPCs)3.
Both crawlers and the backend gRPC server are implemented using the Go4 programming
language, so to make use of existing know-how and to allow others to use the implementa-
tion in the future, the coordinator backend, and crawler abstraction were also implemented
in Go.

BMS already has an existing abstraction for crawlers. This implementation is highly opti-
mized but also tightly coupled and grown over time. The abstraction became leaky and
extending it proved to be complicated. A new crawler abstraction was created with testa-
bility, extensibility, and most features of the existing implementation in mind, which can
be ported back to be used by the existing crawlers.

The new implementation consists of three main interfaces:

• FindPeer, to receive new crawl tasks from any source

• ReportPeer, to report newly found peers

• Protocol, the actual botnet protocol implementation used to ping a peer and request
its peer list

Currently, there are two sources FindPeer can use: read peers from a file on disk or
request them from the gRPC BMS coordinator. The ExactlyOnceFinder delegate can
wrap another FindPeer instance and ensures the source is only requested once. This is
used to implement the bootstrapping mechanism of the old crawler, where once when the
crawler is started, the list of bootstrap nodes is loaded from a text file. CombinedFinder
can combine any amount of FindPeer instances and will return the sum of requesting all
the sources.

The PeerTask instances returned by FindPeer contain the IP address and port of the
peer, if the crawler should start or stop the operation, when to start and stop crawling, and

3https://www.grpc.io
4https://go.dev/

43

https://www.grpc.io
https://go.dev/

6 Implementation

reportsreports

createscreates

BMSReport

«Delegate»
BatchedReport

LoggingReport «Delegate»
CombinedReport

«Delegate»
AutoCommitReport

«Worker»
CrawlPeer

«Worker»
PingPeer

FileFInder «Delegate»
ExactlyOnceFinder BMSFinder

<<Interface>>
ReportPeer

 + ReportReplies(...peer.Reply): error
+ ReportEdges(...peer.Edge): error
+ Flush(): error

<<Interface>>
FindPeer

 + FindPeers(): ([]PeerTask, error)

«Delegate»
CombinedFinder

<<Interface>>
Protocol

+ RequestPeers(peer.Peer): ([]peer.Edge, error)
+ Ping(peer.Peer): (*peer.Reply, error)
+ PingInterval(): *time.Duration
+ CrawlInterval(): *time.Duration

UseUse

Figure 16: Architecture of the new crawler

in which interval the peer should be crawled. For each task, a CrawlPeer and PingPeer
worker is started or stopped as specified in the received PeerTask. These tasks use the
ReportPeer interface to report any new peer that is found.

Current report possibilities are LoggingReport to simply log new peers to get feedback
from the crawler at runtime, and BMSReport which reports back to BMS. BatchedReport
delegates a ReportPeer instance and batch newly found peers up to a specified batch size
and only then flush and actually report. AutoCommitReport will automatically flush a
delegated ReportPeer instance after a fixed amount of time and is used in combination
with BatchedReport to ensure the batches are written regularly, even if the batch limit

44

6 Implementation

is not reached yet. CombinedReport works analogous to CombinedFinder and combines
many ReportPeer instances into one.

PingPeer and CrawlPeer use the implementation of the botnet Protocol to perform
the actual crawling in predefined intervals, which can be overwritten on a per PeerTask
basis.

The server-side part of the system consists of a gRPC server to handle the client requests,
a scheduler to assign new peers, and a Strategy interface for modularity over how tasks
are assigned to crawlers.

<<Interface>>
Strategy

+ AssignPeers(botnetId int) (map[string][]Peer, error)

RoundRobin MaxFrequency

WeightedModulo

Modulo

WeightedRoundRobin

StrategyWorker

DB

Use

Writes

gRPCServer

Reads

Figure 17: Architecture of the gRPC backend

45

7 Conclusion

7 Conclusion

Collaborative monitoring of P2P botnets allows circumventing some anti-monitoring efforts.
We were able to show, that it also enables more effective monitoring systems for larger
botnets, since each peer can be visited by only one crawler. The current concept of
independent crawlers in BMS can also use multiple workers but there is no way to ensure
a peer is not watched by multiple crawlers thereby using unnecessary resources.

We were able to show, that a collaborative monitoring approach for P2P botnets helps to
circumvent anti-monitoring and monitoring detection mechanisms and is helpful to improve
resource usage when monitoring large botnets. On the other hand, graph ranking algorithms
have been proven to be hard to bypass without requiring large amounts of sensor nodes.

Luckily most of the anti-monitoring and monitoring detection techniques discussed in this
work are of academic nature and have not yet been deployed in real-world botnets. Fur-
ther investigation and improvements in P2P botnet monitoring are required to prevent a
situation where a botmaster implements the currently theoretical concepts and renders
monitoring as it is currently done, ineffective.

46

8 Further Work

8 Further Work

Following this work, it should be possible to rewrite the existing crawlers using the new
abstraction. This might bring some performance issues to light which can be solved by
investigating the optimizations from the old implementation and applying them to the new
one.

Another way to expand on this work is automatically scaling the available crawlers up and
down, depending on the botnet size and the number of concurrently online peers. Doing
so would allow a constant crawl interval for even highly volatile botnets. Autoscaling
features offered by many cloud-computing providers can be evaluated to automatically add
or remove crawlers based on the monitoring load, a botnet’s size, and the number of active
peers. This should also allow the creation of workers with new IP addresses in different
geolocations in a fast, easy and automated way. This also requires investigating hosting
providers which allow botnet crawling by their terms of use.

The current backend implementation assumes an immutable set of crawlers. For autoscaling
to work, efficient reassignment of peers has to be implemented to account for added or
removed workers.

Placing churned peers or peers with suspicious network activity (those behind carrier-grade
NATs) might just offer another characteristic to flag sensors in a botnet. The feasibility of
this approach should be investigated and maybe there are ways to mitigate this problem.

47

8 Further Work

Acknowledgments

In the end, I would like to thank

• Prof. Dr. Christoph Skornia for being a helpful supervisor in this and many earlier
works of mine

• Leon Böck for offering the possibility to work on this research project, regular feed-
back and technical expertise

• Valentin Sundermann for being available for insightful ad hoc discussions at any time
of day for many years

• Friends and family who pushed me into continuing this path

48

List of Figures

List of Figures

1 Communication paths in different types of botnets 6
2 Timeline of requests as received by a peer when crawled by a single crawler 21
3 Timeline of crawler events when optimized for effective frequency 22
4 Timeline of crawler events when optimized over the number of crawlers . . 22
5 IP based partitioning . 27
6 IP based partitioning for crawlers on generated dataset 29
7 Derivation from the expected interval per crawler 32
8 Differences in graph metrics . 34
10 SensorRank distribution with initial rank ∀v ∈ V : PR0(v) = 0.25 36
11 SensorRank distribution with initial rank ∀v ∈ V : PR0(v) = 0.5 37
12 SensorRank distribution with initial rank ∀v ∈ V : PR0(v) = 0.75 38
13 In-degrees after removing edges . 39
14 PageRank after removing edges . 40
15 SensorRank after removing edges . 41
16 Architecture of the new crawler . 44
17 Architecture of the gRPC backend . 45

49

List of Tables

List of Tables

1 Variance and standard deviation for IP-based partitioning on 1595 IP addresses 28
2 Variance and standard deviation for IP-based partitioning on 1,000,000 IP

addresses . 30
3 Average deviation per crawler . 33
4 Values for metrics from Figure 8 (a/b) 34
5 Values for PageRank iterations with initial rank ∀v ∈ V : PR0(v) = 0.25 . 36
6 Values for PageRank iterations with initial rank ∀v ∈ V : PR0(v) = 0.5 . . 37
7 Values for PageRank iterations with initial rank ∀v ∈ V : PR0(v) = 0.75 . 37

50

List of Listings

List of Listings
1 Relevant Fields for Peers and Tasks . 16
2 Pseudocode for weighted round-robin . 19

51

List of Acronyms

List of Acronyms

AS Autonomous System . 20, 24 f.

BMS Botnet Monitoring System 13 f., 17, 26, 43 f., 46

C2 Command and Control . 5–8

DDoS Distributed Denial of Service . 5, 11

DHT Distributed Hash Table . 8

gRPC gRPC Remote Procedure Call . 43, 45

IoT Internet of Things . 5

IRC Internet Relay Chat . 5 f.

MD5 Message-Digest Algorithm 5 . 20

MM Membership Management . 8, 11 f.

NAT Network Access Translation . 8, 24, 47

P2P Peer-to-Peer . 2, 5–14, 22, 24, 46

SPoF Single Point of Failure . 6

WCC Weakly Connected Component 12, 22 ff., 33, 35

52

References

References
[1] Dennis Andriesse, Christian Rossow, and Herbert Bos. “Reliable Recon in Ad-

versarial Peer-to-Peer Botnets”. In: Proceedings of the 2015 Internet Mea-
surement Conference. IMC ’15: Internet Measurement Conference. Tokyo
Japan: ACM, Oct. 28, 2015, pp. 129–140. isbn: 978-1-4503-3848-6. doi:
10.1145/2815675.2815682. url: https://dl.acm.org/doi/10.1145/
2815675.2815682 (visited on 11/16/2021).

[2] Dennis Andriesse et al. “Highly Resilient Peer-to-Peer Botnets Are Here: An
Analysis of Gameover Zeus”. In: 2013 8th International Conference on Mali-
cious and Unwanted Software: "The Americas" (MALWARE). 2013 8th Inter-
national Conference on Malicious and Unwanted Software: "The Americas"
(MALWARE). Fajardo, PR, USA: IEEE, Oct. 2013, pp. 116–123. isbn: 978-1-
4799-2534-6 978-1-4799-2535-3. doi: 10.1109/MALWARE.2013.6703693.
url: https://ieeexplore.ieee.org/document/6703693/ (visited on
02/27/2022).

[3] Manos Antonakakis et al. “From Throw-Away Traffic to Bots: Detecting
the Rise of DGA-Based Malware”. In: 21st USENIX Security Symposium
(USENIX Security 12). Bellevue, WA: USENIX Association, Aug. 2012, pp. 491–
506. isbn: 978-931971-95-9. url: https://www.usenix.org/conferenc
e/usenixsecurity12/technical-sessions/presentation/antonaka
kis.

[4] Availability of broadband internet to households in Germany from 2017 to
2020, by bandwidth class. Statista Inc. Aug. 16, 2021. url: https://www.
statista.com/statistics/460180/broadband- availability- by-
bandwidth-class-germany/ (visited on 11/11/2021), archived at https:
//web.archive.org/web/20210309010747/https://www.statista.
com/statistics/460180/broadband-availability-by-bandwidth-
class-germany/ on Mar. 9, 2021.

53

https://doi.org/10.1145/2815675.2815682
https://dl.acm.org/doi/10.1145/2815675.2815682
https://dl.acm.org/doi/10.1145/2815675.2815682
https://doi.org/10.1109/MALWARE.2013.6703693
https://ieeexplore.ieee.org/document/6703693/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/antonakakis
https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/
https://web.archive.org/web/20210309010747/https://www.statista.com/statistics/460180/broadband-availability-by-bandwidth-class-germany/

References

[5] Leon Böck et al. “Next Generation P2P Botnets: Monitoring Under Adverse
Conditions”. In: Research in Attacks, Intrusions, and Defenses. Ed. by Michael
Bailey et al. Vol. 11050. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2018, pp. 511–531. isbn: 978-3-
030-00469-9 978-3-030-00470-5. doi: 10.1007/978-3-030-00470-5_24.
url: http : / / link . springer . com / 10 . 1007 / 978 - 3 - 030 - 00470 -
5%5C_24 (visited on 04/08/2022).

[6] Leon Böck et al. “Poster: Challenges of Accurately Measuring Churn in P2P
Botnets”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’19: 2019 ACM SIGSAC Conference on
Computer and Communications Security. London United Kingdom: ACM,
Nov. 6, 2019, pp. 2661–2663. isbn: 978-1-4503-6747-9. doi: 10.1145/
3319535.3363281. url: https://dl.acm.org/doi/10.1145/3319535.
3363281 (visited on 11/12/2021).

[7] Joseph Demarest. Taking Down Botnets. Federal Bureau of Investigation.
July 15, 2014. url: https://www.fbi.gov/news/testimony/taking-
down-botnets (visited on 03/23/2022), archived at https://web.archiv
e.org/web/20220318082034/https://www.fbi.gov/news/testimony/
taking-down-botnets.

[8] David Dittrich. “So You Want to Take over a Botnet”. In: Proceedings of
the 5th USENIX Conference on Large-Scale Exploits and Emergent Threats.
LEET’12. San Jose, CA: USENIX Association, 2012, p. 6. doi: 10.5555/
2228340.2228349.

[9] Falliere, Nicolas. Sality: Story of a Peer-to-Peer Viral Network. July 2011.
url: https : / / papers . vx - underground . org / archive / Symantec /
sality-story-of-peer-to-peer-11-en.pdf (visited on 03/16/2022),
archived at https://web.archive.org/web/20161223003320/http:
//www.symantec.com/content/en/us/enterprise/media/security_

54

https://doi.org/10.1007/978-3-030-00470-5_24
http://link.springer.com/10.1007/978-3-030-00470-5%5C_24
http://link.springer.com/10.1007/978-3-030-00470-5%5C_24
https://doi.org/10.1145/3319535.3363281
https://doi.org/10.1145/3319535.3363281
https://dl.acm.org/doi/10.1145/3319535.3363281
https://dl.acm.org/doi/10.1145/3319535.3363281
https://www.fbi.gov/news/testimony/taking-down-botnets
https://www.fbi.gov/news/testimony/taking-down-botnets
https://web.archive.org/web/20220318082034/https://www.fbi.gov/news/testimony/taking-down-botnets
https://web.archive.org/web/20220318082034/https://www.fbi.gov/news/testimony/taking-down-botnets
https://web.archive.org/web/20220318082034/https://www.fbi.gov/news/testimony/taking-down-botnets
https://doi.org/10.5555/2228340.2228349
https://doi.org/10.5555/2228340.2228349
https://papers.vx-underground.org/archive/Symantec/sality-story-of-peer-to-peer-11-en.pdf
https://papers.vx-underground.org/archive/Symantec/sality-story-of-peer-to-peer-11-en.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf

References

response/whitepapers/sality_peer_to_peer_viral_network.pdf
on Dec. 23, 2016.

[10] Dan Goodin. Brace yourselves — source code powering potent IoT DDoSes
just went public. Ars Technica. Oct. 2, 2016. url: https://arstechn
ica.com/information- technology/2016/10/brace- yourselves-
source- code- powering- potent- iot- ddoses- just- went- public/
(visited on 11/11/2021), archived at https://web.archive.org/web/
20211022032617/https://arstechnica.com/information-technol
ogy/2016/10/brace-yourselves-source-code-powering-potent-
iot-ddoses-just-went-public/ on Oct. 22, 2021.

[11] Guofei Gu et al. “BotMiner: Clustering Analysis of Network Traffic for Protocol-
and Structure-Independent Botnet Detection”. In: Proceedings of the 17th
Conference on Security Symposium. SS’08. San Jose, CA: USENIX Associa-
tion, 2008, pp. 139–154.

[12] Amy Hogan-Burney. Notorious cybercrime gang’s botnet disrupted. Microsoft.
url: https://blogs.microsoft.com/on-the-issues/2022/04/13/zl
oader-botnet-disrupted-malware-ukraine/ (visited on 04/15/2022),
archived at https://web.archive.org/web/20220413210653/https:
//blogs.microsoft.com/on- the- issues/2022/04/13/zloader-
botnet-disrupted-malware-ukraine/ on Apr. 13, 2022.

[13] Shankar Karuppayah et al. “BoobyTrap: On autonomously detecting and
characterizing crawlers in P2P botnets”. In: 2016 IEEE International Confer-
ence on Communications (ICC). ICC 2016 - 2016 IEEE International Confer-
ence on Communications. Kuala Lumpur, Malaysia: IEEE, May 2016, pp. 1–7.
isbn: 978-1-4799-6664-6. doi: 10.1109/ICC.2016.7510885. url: http:
//ieeexplore.ieee.org/document/7510885/ (visited on 11/12/2021).

[14] Shankar Karuppayah et al. “SensorBuster: On Identifying Sensor Nodes in
P2P Botnets”. In: Proceedings of the 12th International Conference on Avail-

55

https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://web.archive.org/web/20161223003320/http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/sality_peer_to_peer_viral_network.pdf
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://web.archive.org/web/20211022032617/https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://blogs.microsoft.com/on-the-issues/2022/04/13/zloader-botnet-disrupted-malware-ukraine/
https://blogs.microsoft.com/on-the-issues/2022/04/13/zloader-botnet-disrupted-malware-ukraine/
https://web.archive.org/web/20220413210653/https://blogs.microsoft.com/on-the-issues/2022/04/13/zloader-botnet-disrupted-malware-ukraine/
https://web.archive.org/web/20220413210653/https://blogs.microsoft.com/on-the-issues/2022/04/13/zloader-botnet-disrupted-malware-ukraine/
https://web.archive.org/web/20220413210653/https://blogs.microsoft.com/on-the-issues/2022/04/13/zloader-botnet-disrupted-malware-ukraine/
https://doi.org/10.1109/ICC.2016.7510885
http://ieeexplore.ieee.org/document/7510885/
http://ieeexplore.ieee.org/document/7510885/

References

ability, Reliability and Security. ARES ’17. New York, NY, USA: Association
for Computing Machinery, Aug. 29, 2017, pp. 1–6. isbn: 978-1-4503-5257-4.
doi: 10.1145/3098954.3098991. url: https://doi.org/10.1145/
3098954.3098991 (visited on 03/23/2021).

[15] Erwan Le Malécot and Daisuke Inoue. “The Carna Botnet Through the Lens
of a Network Telescope”. In: Foundations and Practice of Security. Ed. by
Jean Luc Danger et al. Vol. 8352. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 426–441. isbn:
978-3-319-05301-1 978-3-319-05302-8. doi: 10.1007/978-3-319-05302-
8_26. url: http://link.springer.com/10.1007/978-3-319-05302-
8%5C_26 (visited on 04/16/2022).

[16] Petar Maymounkov and David Mazières. “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric”. In: Peer-to-Peer Systems. Ed. by Pe-
ter Druschel, Frans Kaashoek, and Antony Rowstron. Red. by Gerhard Goos,
Juris Hartmanis, and Jan van Leeuwen. Vol. 2429. Series Title: Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 53–65. isbn: 978-3-540-44179-3 978-3-540-45748-0. doi: 10.1007/3-
540-45748-8_5. url: http://link.springer.com/10.1007/3-540-
45748-8_5 (visited on 04/16/2022).

[17] Yacin Nadji, Roberto Perdisci, and Manos Antonakakis. “Still Beheading Hy-
dras: Botnet Takedowns Then and Now”. In: IEEE Transactions on Depend-
able and Secure Computing 14.5 (Sept. 1, 2017), pp. 535–549. issn: 1545-
5971. doi: 10.1109/TDSC.2015.2496176. url: http://ieeexplore.
ieee.org/document/7312442/ (visited on 03/17/2022).

[18] Yacin Nadji et al. “Beheading hydras: performing effective botnet take-
downs”. In: Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security - CCS ’13. the 2013 ACM SIGSAC conference.
Berlin, Germany: ACM Press, 2013, pp. 121–132. isbn: 978-1-4503-2477-9.

56

https://doi.org/10.1145/3098954.3098991
https://doi.org/10.1145/3098954.3098991
https://doi.org/10.1145/3098954.3098991
https://doi.org/10.1007/978-3-319-05302-8_26
https://doi.org/10.1007/978-3-319-05302-8_26
http://link.springer.com/10.1007/978-3-319-05302-8%5C_26
http://link.springer.com/10.1007/978-3-319-05302-8%5C_26
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
http://link.springer.com/10.1007/3-540-45748-8_5
http://link.springer.com/10.1007/3-540-45748-8_5
https://doi.org/10.1109/TDSC.2015.2496176
http://ieeexplore.ieee.org/document/7312442/
http://ieeexplore.ieee.org/document/7312442/

References

doi: 10.1145/2508859.2516749. url: http://dl.acm.org/citation.
cfm?doid=2508859.2516749 (visited on 03/15/2022).

[19] Shishir Nagaraja et al. “BotGrep: Finding P2P Bots with Structured Graph
Analysis”. In: Proceedings of the 19th USENIX Conference on Security.
USENIX Security’10. Washington, DC: USENIX Association, 2010, p. 7.
isbn: 8887666655554.

[20] Jose Nazario and Thorsten Holz. “As the net churns: Fast-flux botnet obser-
vations”. In: 2008 3rd International Conference on Malicious and Unwanted
Software (MALWARE). 2008 3rd International Conference on Malicious and
Unwanted Software (MALWARE). Fairfax, VI: IEEE, Oct. 2008, pp. 24–
31. isbn: 978-1-4244-3288-2. doi: 10.1109/MALWARE.2008.4690854.
url: https://ieeexplore.ieee.org/document/4690854/ (visited on
03/15/2022).

[21] Number of Internet of Things (IoT) Connected Devices Worldwide from
2019 to 2030. Statista Inc. Dec. 2020. url: https://www.statista.
com/statistics/1183457/iot-connected-devices-worldwide/ (vis-
ited on 11/11/2021), archived at https : / / web . archive . org / web /
20211025185804/https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/ on Oct. 25, 2021.

[22] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to the
Web. Jan. 29, 1998. url: http://ilpubs.stanford.edu:8090/422/1/
1999-66.pdf (visited on 11/30/2021).

[23] Nick Pantic and Mohammad I. Husain. “Covert Botnet Command and Con-
trol Using Twitter”. In: Proceedings of the 31st Annual Computer Security
Applications Conference on - ACSAC 2015. the 31st Annual Computer Se-
curity Applications Conference. Los Angeles, CA, USA: ACM Press, 2015,
pp. 171–180. isbn: 978-1-4503-3682-6. doi: 10.1145/2818000.2818047.

57

https://doi.org/10.1145/2508859.2516749
http://dl.acm.org/citation.cfm?doid=2508859.2516749
http://dl.acm.org/citation.cfm?doid=2508859.2516749
https://doi.org/10.1109/MALWARE.2008.4690854
https://ieeexplore.ieee.org/document/4690854/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://web.archive.org/web/20211025185804/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://web.archive.org/web/20211025185804/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://web.archive.org/web/20211025185804/https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
https://doi.org/10.1145/2818000.2818047

References

url: http://dl.acm.org/citation.cfm?doid=2818000.2818047
(visited on 03/15/2022).

[24] Christian Rossow et al. “SoK: P2PWNED - Modeling and Evaluating the
Resilience of Peer-to-Peer Botnets”. In: 2013 IEEE Symposium on Security
and Privacy. 2013 IEEE Symposium on Security and Privacy (SP) Conference
dates subject to change. Berkeley, CA, USA: IEEE, May 2013, pp. 97–111.
isbn: 978-1-4673-6166-8 978-0-7695-4977-4. doi: 10.1109/SP.2013.17.
url: https://ieeexplore.ieee.org/document/6547104/ (visited on
03/15/2022).

[25] Marc Stevens. “Fast Collision Attack on MD5”. In: (2006). https://ia.
cr/2006/104.

[26] Daniel Stutzbach and Reza Rejaie. “Understanding Churn in Peer-to-Peer
Networks”. In: Proceedings of the 6th ACM SIGCOMM on Internet Mea-
surement - IMC ’06. The 6th ACM SIGCOMM. Rio de Janeriro, Brazil: ACM
Press, 2006, p. 189. isbn: 978-1-59593-561-8. doi: 10.1145/1177080.
1177105. url: http://portal.acm.org/citation.cfm?doid=1177080.
1177105 (visited on 03/08/2022).

[27] Alex Turing, Hui Wang, and Genshen Ye. The Mostly Dead Mozi and Its’
Lingering Bots. 360 Netlab. Aug. 30, 2021. url: https://blog.netl
ab.360.com/the- mostly- dead- mozi- and- its- lingering- bots/
(visited on 04/07/2022), archived at https://web.archive.org/web/
20220130162722/https://blog.netlab.360.com/the-mostly-dead-
mozi-and-its-lingering-bots/ on Jan. 30, 2022.

[28] Junjie Zhang et al. “Building a Scalable System for Stealthy P2P-Botnet
Detection”. In: IEEE Transactions on Information Forensics and Security 9.1
(Jan. 2014), pp. 27–38. issn: 1556-6013, 1556-6021. doi: 10.1109/TI
FS.2013.2290197. url: http://ieeexplore.ieee.org/document/
6661360/ (visited on 11/09/2021).

58

http://dl.acm.org/citation.cfm?doid=2818000.2818047
https://doi.org/10.1109/SP.2013.17
https://ieeexplore.ieee.org/document/6547104/
https://ia.cr/2006/104
https://ia.cr/2006/104
https://doi.org/10.1145/1177080.1177105
https://doi.org/10.1145/1177080.1177105
http://portal.acm.org/citation.cfm?doid=1177080.1177105
http://portal.acm.org/citation.cfm?doid=1177080.1177105
https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://web.archive.org/web/20220130162722/https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://web.archive.org/web/20220130162722/https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://web.archive.org/web/20220130162722/https://blog.netlab.360.com/the-mostly-dead-mozi-and-its-lingering-bots/
https://doi.org/10.1109/TIFS.2013.2290197
https://doi.org/10.1109/TIFS.2013.2290197
http://ieeexplore.ieee.org/document/6661360/
http://ieeexplore.ieee.org/document/6661360/

Erklärung

1. Mir ist bekannt, dass dieses Exemplar der Masterthesis als Prüfungsleistung in das
Eigentum der Ostbayerischen Technischen Hochschule Regensburg übergeht.

2. Ich erkläre hiermit, dass ich diese Masterthesis selbstständig verfasst, noch nicht an-
derweitig für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als solche gekenn-
zeichnet habe.

Ort, Datum und Unterschrift

Presented by: Valentin Brandl
Student ID: 3220018
Study Programme: Master Informatik
Time Frame: 2021-12-01 – 2022-05-01
Supervisor: Prof. Dr. Christoph Skornia
Secondary Supervisor: Prof. Dr. Thomas Waas
External Supervisor: Leon Böck

	Introduction
	Background
	Formal Model of P2P Botnets
	Monitoring Techniques for P2P Botnets
	Passive Monitoring
	Active Monitoring
	Anti-Monitoring Techniques

	Related Work

	Methodology
	Protocol Primitives

	Coordination Strategies
	Load Balancing
	Round Robin Distribution
	IP-based Partitioning

	Reduction of Request Frequency
	Creating and Reducing Edges for Sensors

	Evaluation
	Load Balancing
	Reduction of Request Frequency
	Impact of Additional Edges on Graph Metrics
	Use Other Known Sensors
	Effectiveness against SensorBuster

	Reducing Incoming Edges to Reduce Page- and SensorRank

	Implementation
	Conclusion
	Further Work
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	References

