
Security Response

Executive Summary
W32.Sality is a file infector that spreads by infecting executable files and
by replicating itself across network shares. Infected hosts join a peer-
to-peer network used to propagate malware on the compromised com-
puter. Typically, those additional programs will be used to relay spam,
proxy communications, steal private information, infect Web servers
or achieve distributed computing tasks, such as password cracking.

The combination of file infection mechanism and the fully de-
centralized peer-to-peer network, along with other anti-secu-
rity measures, make Sality one of the most effective and re-
silient malware in today’s threat landscape. Estimations show
that hundreds of thousands of machines are infected by Sality.

This paper will give an overview of Sality and briefly describe the archi-
tecture of the malware. The core of this paper focuses on the peer-to-
peer characteristics of Sality, and examines its strengths and potential
limitations. Finally, I will describe current trends and metrics for Sality.

Timeline
2003-2004: Early versions
The first public occurrence of Sality was recorded in June 2003. In the
initial versions, Sality infected executables by pre-pending its UPX-
packed code to the host. The payload consisted of an information
stealing routine, to collect user-input data (via a keylogger DLL), pass-
words stored in the registry and dial-up connection settings. The sto-
len data was then emailed to the attacker, using various SMTP servers
located in Russia. An example of such an email can be seen in Figure 1.

Nicolas Falliere
Principal Software Engineer

Sality: Story of a Peer-
to-Peer Viral Network

Contents
Executive Summary.. 1
Timeline... 1
Architecture.. 3
Going peer-to-peer.. 7
Review of the V3 network................................. 11
Review of the V4 network................................. 14
Metrics and Estimations................................... 15
Conclusion.. 18
Annex A .. 19
Annex B .. 20

Version 1.0 (July 2011)

Sality: Story of a peer-to-peer viral network

Page 2

Security Response

 Figure 1

Exfiltration mail sent by Sality v2.93

Sality: Story of a peer-to-peer viral network

Page 3

Security Response

A few interesting elements are found in these early versions of the virus. First, the author did not adopt the
quiet, stay-under-the-radar approach many malware creators have nowadays. Second, the curious reader asking
where the name “Sality” originated from now has the answer: it is derived from “Salavat City”, a Russian town
from which the author may originate. This threat bears a couple of other names, also related to strings found
inside the payload: “Kuku” (which means Hide-and-Seek in Russian), or “Sector” (the nickname of the author).
The simplicity of the early versions is expressed in at least three different areas:

The file infector is basic compared to more advanced viruses.•	
The virus and its payload form a whole entity. The author has no easy way to update it.•	
The exfiltration method is also very basic, as the email addresses are hardcoded in the malware.•	

2004-2008: Improving their creation
Between 2004 and 2008, the authors worked a lot to improve their creation. Detailing the many variants that
appeared during this period of time is not in the scope of this paper.

More generally, however, the
infection technique changed as
the virus became polymorphic
with entry-point obscuring
techniques - making it more
difficult to detect and remedi-
ate. The payload was separated
from the virus code, as the virus
would download additional
malware referenced by URLs
hardcoded in the virus body.

Version 3.09, active in 2006, is
a good example of that change.
It includes anti-security software routines to block or disable a few firewalls, utilities, or anti-virus programs. It
contacts a HTTP server (www.h3ns1k.info, www.g1ikdcvns3sdsal.info, or www.f5ds1jkkk4d.info), which returns
an encoded list of malware to be executed. The author also decided to be more quiet, though a few references to
“kuku” remain, such as in the user-agent, “KUKU v3.09 exp” in this case.

2008-2011: Better distribution scheme
Sometime in 2008, maybe late 2007, the author decided to fix a major weakness in the distribution scheme: the
hardcoded URLs to the payload. Such URLs can be easily blocked, the immediate result being that newly infected
hosts are instantly neutralized, unable to download the additional malware.

The solution chosen was the addition of a peer-to-peer component, which will be studied in detail in upcoming
sections.

Architecture
This section describes the general architecture of recent variants of Sality (2008 and later.) All components are
semi-independent and run in separate threads.

The injector
Sality injects all running processes with a copy of its code, except for those belonging to the “system”, “local ser-
vice” and “network service” accounts. If the process is privileged, Sality will try to grant itself Debug privileges,
and try to inject it once more.

 Figure 2

Sality v3.09 contacting a C&C server (now sink-holed)

Sality: Story of a peer-to-peer viral network

Page 4

Security Response

If an instance of Sality is killed or terminated, voluntarily or not, one of the injected processes will take over. To
avoid multiple injections of the same process, per-process mutexes named “<ProcessName>M_<x>_” are cre-
ated (<x> being the decimal representation of the Process ID). A large number of such mutexes on a running
system is good indication that it might be infected by the virus, as shown in Figure 3.

The protector
This component is used to protect Sality from various security software or tools.

First, in order to prevent Safeboot mode, Sality deletes registry subkeys and values located in HKEY _ CUR-
RENT _ USER\System\CurrentControlSet\Control\SafeBoot and HKEY _ LOCAL _ MACHINE\Sys-
tem\CurrentControlSet\Control\SafeBoot.

Many antivirus and security services are stopped and disabled. Earlier versions of Sality were even more aggres-
sive and deleted these services. The list of affected services can be found in Annex A.

Sality also drops a kernel driver responsible for several tasks. This driver is dropped under a pseudo-random
name in the %System%\drivers folder. A service is created to start it on-demand. The service name seems
steady across variants, “amsint32”. This driver serves three different purposes:

It acts as a process killer: Sality continuously scans the processes of a compromised computer. If a name •	
matches one of the names stored in a hard-coded list of well-known security processes (see Annex A), this
process is terminated. In order to bypass potential security measures, the process will be killed by the driver,
in kernel mode.
It acts as a packet filter: the driver registers one of its routine as an IPFilter Callback routine, by sending an •	
IOCTL_PF_SET_EXTENSION_POINTER control request to the IPFilter driver. (This callback can be used to
implement firewall software in Windows XP/2003/2000, but is no longer available on Vista and above.) The
callback set by Sality will drop packets if they contain string patterns of security vendor websites. The com-
plete list can be found in Annex A. In effect, a customer using Windows XP would not be able to browse the
Symantec.com website, for instance.

 Figure 3

Mutexes on a computer compromised by Sality

Sality: Story of a peer-to-peer viral network

Page 5

Security Response

The driver also has the possibility to block incoming and outgoing traffic to SMTP servers. This feature can be •	
enabled by the user-mode component of Sality, upon reception of a special order sent by the botmaster. Later
variants can no longer use this feature, though the code implementation remains.

The infector
The infector component of Sality has the responsibility to propagate the virus. Several areas are candidates for
infection:

Files referenced under the •	 HKEY _ CURRENT _ USER\Software\Microsoft\Windows\ShellNoRoam\
MUICache registry key are infected. This key contains the applications’ “Common names” used by Explorer
when grouping buttons in the Task bar. A side-effect of this is that the MUICache entry is a great repository
(partial though) of applications installed on a machine.
Files referenced under the classic registry Run keys, •	 HKEY _ CURRENT _ USER\Software\Microsoft\
Windows\CurrentVersion\Run and HKEY _ LOCAL _ MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run are also infected.
All files on all mapped drives, from B: to Z:, are enumerated and potentially infected. Only executables having •	
an “.exe” or “.scr” (screensaver) extensions are infected.
Root folders of drives other than the Windows partition are infected: Sality will drop an infected copy of the •	
Windows Calculator or the Minesweeper game, and will also create or modify the autorun.inf in order to try
to run this file automatically when the drive is mounted. This dropped copy of Sality will have a random name
with a “.exe”, “.cmd” or “.pif” extension. In practice, USB flash drives and external hard-drives can be infected.
When such a file is executed, the host (Calculator or Minesweeper) will not be run, but an Explorer window
showing the root of the current drive, will be shown instead.
Finally, network resources are enumerated and all executable files found are candidates for infection.•	

If a file targeted for infection belongs to a security software application (see Annex A), Sality will instead attempt
to damage the file by overwriting the entry-point instructions with the bytes “CC C3 CC C3 CC C3 CC C3” (re-
peated sequence of “int 3”, “ret” instructions). If this fails, then Sality will simply attempt to delete the file. The
recursive directory infection routine also searches and deletes files having a “.vdb” or “.avc” extension, respec-
tively used by Symantec Antivirus and Kaspersky Antivirus virus definitions. These extensions may also be used
by other programs.

Finally, note that all infections routines are disabled if the peerlist (as defined later) is empty. This behavior is
coherent with the current distribution scheme, as it there is little value in infecting files that would be unable to
connect to the P2P network to download and retrieve additional malware.

Sality employs polymorphic and entry-point obscuring (EPO) techniques to infect files:

The entry-point address of the host is unchanged.•	
The code at the entry-point is changed, and replaced by a variable stub, generated by Sality polymorphic code •	
generator (dubbed “Simple Poly Engine v1.1a (c) Sector”).
This stub jumps to the main virus body, appended to the last section of the host file. The initial code of this •	
body is also polymorphic and contains junk instructions to thwart emulation strategies used by anti-virus. This
stub eventually decrypts and executes a secondary region, which is the loader itself.
The loader is run in a separate thread in the infected process. Its role is to load and execute Sality itself •	
(hereby referred to as payload). If another copy of Sality is running on the system, it will wait.
Meanwhile, the original entry-point code (OEP) of the host is restored and the host is executed. A secondary •	
strategy (as used by files dropped at the root as described above), consists in opening an Explorer window.

Figure 4 illustrates the virus structure and execution flow.

In order to synchronize its different instances and to prevent multiple runs of the payload, Sality creates a mutex
named “uxJLpe1m”, which is unique across variants. The presence of this mutex on a system is very strong indi-
cation that it is infected by Sality. Likewise, creating this mutex beforehand is a simple and efficient inoculation
method, which should prevent a machine from getting infected in the first place.

Sality: Story of a peer-to-peer viral network

Page 6

Security Response

The downloader
This component is responsible for downloading and executing additional malware pointed to by URLs retrieved
by the peer-to-peer component.

Files downloaded are usually encrypted by RC4, using a key hardcoded in the virus body. Encryption details vary
based on the network version. Typically, the key used to initialize the s-box is “kukutrusted!.” in older versions, or
“GdiPlus.dll” in newer versions.

So far, the distributed malware have the same “code signature” as Sality itself. It seems reasonable to assume
they are written by the same gang, or at least share a significant portion of code. These malware are somehow
more traditional than Sality, as they usually communicate with and report to central C&C servers, located around
the world. The following is a list of malware programs distributed in the last year:

Spam generators and spam relays•	 are by far the most popular programs. The spam usually relates to Russian
casinos or online pharmacies.
HTTP proxies to relay traffic•	 . They can be used to mask shady operations and achieve anonymity.
Information stealers•	 , such as passwords and credentials locally stored on compromised computers, as well
as Web credentials via Internet Explorer injection.
Website infector.•	 This malware sniffs and searches FTP credentials. It then connects to these machines and
infects web-related HTML files: infection can be a simple IFRAME insertion, pointing to a third-party domain,
or complex server-side scripts. The end-goal can range from drive-by download to install malware on users
visiting these Web pages, to advertisement delivery.
Distributed cracker.•	 In February 2011, Sality operators pushed a malware designed to search SIP servers and
crack VoIP accounts in a distributed fashion. See the blog “A Distributed Cracker for VoIP” for more details.
“Experimental malware”.•	 An example includes automatic enrollment to a Facebook app (using previously sto-
len Facebook credentials), or potential manipulation of Google Auto-Complete, as described in the blog “New
Malware can Automatically Register Facebook Applications.”

 Figure 4

Execution flow of an infected file

http://www.symantec.com/connect/blogs/distributed-cracker-voip
http://www.symantec.com/connect/blogs/new-malware-can-automatically-register-facebook-applications
http://www.symantec.com/connect/blogs/new-malware-can-automatically-register-facebook-applications

Sality: Story of a peer-to-peer viral network

Page 7

Security Response

Figure 5 illustrates the geographic localization of Command & Control servers used by the additional malware, as
of July 2011.

The peer-to-peer component
These modules and sub-modules are responsible for the distribution of payload URLs and/or malware to infected
hosts. They are described in detail in the following section.

Going peer-to-peer
The peerlist

Executable files infected by Sality join a peer-to-peer network composed of other compromised computers. The
network is decentralized: there is no central authority and peers are theoretically equipotent. Initial contact with
the network is done via a bootstrap list of peers, carried around by infected files. This list contains the coordi-
nates (public address, port) of a number of peers. In all variants examined, the maximum number of coordinates
was set to 1000.

The first time Sality is run, a copy of the bootstrap list is dumped on the compromised computer. This local list
will be constantly updated over time, as peers are added or removed. This local list also contains extra informa-
tion about peers, such as last contact time, goodcount and PeerID.

The goodcount is an integer value that indicates the value of a peer. When a client tries to reach a peer of its
peerlist, its goodcount is adjusted based on the other peer’s response: if the peer was reached and responded
according to the protocol format, the goodcount is incremented. Otherwise, it is decremented. Peers with a bad
goodcount are discarded from the peerlist. It is important to realize that goodcounts are neither exchanged over
the P2P network nor stored in bootstrap lists. They are specific to a given client’s peerlist.

 Figure 5

Geographic localization of Command & Control servers

Sality: Story of a peer-to-peer viral network

Page 8

Security Response

When Sality infects a file, the local list is embedded in the infected file, in effect, becoming its bootstrap
list.

It is to be understood that peers in the peerlist are, ideally, peers directly reachable by other peers - later defined
as super peers. In the remainder of this document, peerlist is synonymous for list of super peers.

The local list is stored in the registry, under a username-seeded pseudo-randomly generated key in the HKEY_
CURRENT_USER hive. The algorithm changes across major variants, but seems unique across minor variants
implementing the same protocol (defined later.) Figure 7 shows the local list location of an infected “Administra-
tor” user.

 Figure 6

Illustration of the P2P distribution scheme

 Figure 7

Local peerlist for an “Administrator” infected by a V4 variant

Sality: Story of a peer-to-peer viral network

Page 9

Security Response

Transport and packet format
The P2P protocol used by Sality is a custom, simple protocol. The transport takes place over UDP. The port used
is pseudo-randomly generated. The algorithm used to derive the port number is:

Port = C + f(ComputerName)

The constant C and the function f are implementation specific.

For instance, one recent implementation was using:

If (length(CompName) < 2) Then Port := 9674
Else Port = 2199 + CompName[last _ char] * CompName[first _ char]

The payload over UDP has the following format:

0x00	 WORD		 h=hash of data
0x02	 WORD		 n=size of data
0x04	 BYTE[n]	 encrypted(data)

Data is encrypted with RC4. The key used to initialize the s-box is a 4-byte long binary string mapping to the first
4 bytes of the payload. In effect, the key k is MAKE_DWORD(h, n).

Once decrypted, the Data array has the following format:

0x00	 BYTE		 Version
0x01	 DWORD		 URL Pack Sequence ID
0x05	 BYTE		 Command
0x06	 BYTE[m]	 Content (m=n-6)

Figure 8 shows packets sent by a computer recently infected by Sality. The packet is encrypted. As you may see,
the RC4 key is ‘ED 6E 0F 00’ (binary). The Data array size is 0xF (15) bytes long.

Protocol overview
The protocol currently supports three commands:

Announcement & Promotion (command=1)•	
Peer Exchange (command=2)•	
Pack Exchange (command=3)•	

Announcement & Promotion is used by peers to make themselves known to other peers. Each peer starts out as a
simple peer, or client-only peer. A peer can be promoted to super peer, or client-and-server peer. Super peers are
critical in decentralized P2P networks, since they’re the ones that will be contacted by other peers. In practice,
super peers are those directly accessible from the outside world (e.g., machine with a public IP, machine in a NAT
with port redirection.)

 Figure 8

P2P communication taking place on a computer infected by Sality

Sality: Story of a peer-to-peer viral network

Page 10

Security Response

Coordinates of those super peers are exchanged using the Peer Exchange command. In order to keep its peerl-
ist full and current, peers regularly contact other peers and request coordinates. One single super peer can be
exchanged at a time. The whole peerlist cannot be exchanged at once.

The Pack Exchange command allows peers to exchange packs of URLs, which is the end-goal of the Sality P2P
network. In order to protect their network, URL Packs have a sequence number and are digitally signed. Peers
will only install a pack if the signature verification process succeeds, and the sequence number of that pack is
strictly greater than the one it currently has.

Protocol version and network separation
The version field is an integer that identifies the protocol version. Infected hosts may have several versions of
Sality on the same machine (they cannot run at the same time though), and therefore, may join different net-
works. At least four different versions of the protocol exist, as described below:

Currently, the largest network is composed of peers implementing version 3 of the protocol. V3 implementa-•	
tions can be traced back as early as 2009.
The latest implementation is V4. The V4 network is much smaller than V3 though. It seems V4 implementa-•	
tions were released in late 2010.
V2 likely appeared in early 2008, and is now dead. •	
Implementations of V1 have yet to be found, but like V2, the V1 network is certainly inexistent nowadays.•	

The protocol differences between V2 and V3 are minimal. However, the introduction of a new protocol version
is not necessarily correlated with new features. Since each infected file contains the public key used to validate
URL Packs, a new version means a new key. The authors may have decided to move to V3 because V2, or more
precisely the private key used to sign V2 URL Packs, was compromised.

On the other hand, version 4 introduced new features, leading to improved robustness and security, which will
be discussed in the Review of Protocol V4 section.

URL Pack format
A URL Pack contains the following data fields:

The digital signature blob•	
URL metadata, such as Sequence ID, Flags, URL count, etc.•	
URLs•	

Figure 9 shows URL Pack #147 distributed on the V3 network on April 14, 2011.

 Figure 9

URL Pack #147 on V3

Sality: Story of a peer-to-peer viral network

Page 11

Security Response

Review of the V3 network
This section discusses the implementation of the V3 protocol in a variant of Sality distributed in 2010. Other
implementations of V3 and V2 clients were also examined and closely match what follows. Minor differences
(such as timers and limits) will be discussed.

Protocol details
An infected host initiates its P2P module by starting up two threads. One is be the client thread, actively query-
ing other peers from the peerlist. The other one is the server thread, “listening” on a username-derived UDP port
(see the Transport and packet format section). For firewalled hosts or hosts behind NAT routers, the port may
not be reachable to the outside world, making the server thread useless. In such an instance, the peer is a simple
peer. In the other case, the peer is a super peer, able to serve and respond to other peers’ queries.

The client thread contacts all the peers in the peerlist every 40 minutes. The contact consists of:

First, a 1.	 Pack Exchange query: the peer simply informs the server (remote peer) of its current URL Pack Se-
quence ID.
The server response may be:2.	

An acknowledgement, if the server’s URL Pack has a Sequence ID below or equal to the one of the query-•	
ing peer.
Its own URL Pack if the Sequence ID is strictly greater than the one of the querying peer.•	

The client processes the response.3.	
If a URL Pack was returned, the pack is installed. The URL Pack installation process combines three steps: •	
	 – Digital signature validation, using the embedded RSA 1024 bits public key and MD5 hash.
	 – Sequence ID check.
	 – Extraction of the URLs passed to the Downloader component.
If no URL pack was returned because the server indicated that its own pack had the same Sequence ID, •	
the client does nothing further.
If no URL pack was returned because the server indicated that its own pack is older (inferior Sequence ID) •	
than the client’s, the client will send its pack to the server.

If the server did not respond or replied with a malformed response, the server’s goodcount is decreased, and 4.	
no further processing takes place. Else, the goodcount is incremented.
The client then checks its currently assigned Peer ID. The Peer ID is used by a client to know if it has client-only 5.	
(simple peer) or client-server (super peer) capabilities. If a client has its Peer ID set to 0, it will send an An-
nouncement & Promotion query to the server. This query contains the UDP port number used by the server
thread of the client. It does not contain the client’s IP address, as this can be determined by the server
alone.
Upon reception of this query, the server will try to contact the client by sending a 6.	 Pack Exchange query on the
aforementioned port.

If the client responds successfully, the server will assign it a High Peer ID (>= 16,000,000.) The server will •	
also add this peer coordinates to its peerlist, making it readily available for Peer Exchange requests. The
server will also set the goodcount of this new peer to 0.
Else the Peer ID returned will either be 0 or a low value (< 16,000,000), depending on the implementa-•	
tion.

The server will send this “test response” to the client. The test response contains the Peer ID of the client, as 7.	
determined by the server in the previous step.
The client processes the response. If the Peer ID returned is non-zero, it will no longer send 8.	 Announcement &
Promotion requests to any peers. Otherwise, it will continue to send such requests. A peer, regardless of its
Peer ID, is listening and ready to receive data on its UDP port. The Peer ID will only determine whether or not
the peer should Announce and try to Promote itself to other peers.

In studied variants, the server would rather return a Peer ID of 0 instead of a Low Peer ID. This means •	
that clients are inherently more aggressive and will constantly try to become super peers.

Finally, based on the size of its peerlist, the client may decide to send a Peer Exchange request, in order to 9.	
increase its own peerlist.

Recent implementations will send a •	 Peer Exchange request if they have less than 980 peers in their peerl-

Sality: Story of a peer-to-peer viral network

Page 12

Security Response

ist, very close to the peerlist size limit of 1000. Older implementations were found with thresholds as low
as 200.

The server replies with a peer randomly taken from its peerlist, and whose 10.	 goodcount is strictly positive.
This detail is extremely important, as I will explain in the Network strength section.

Once all clients of the peerlist have been queried, the client cleans the peerlist: peers having a goodcount below
a certain threshold are discarded from the peerlist. Recent implementations required a goodcount greater than
-30. However, the peerlist is cleaned only if it contains a minimum number of peers. Recent implementations set
this threshold to 500. Older implementations did not require a minimum number of peers and thus, the peerlist
was cleaned after every round of queries. This was obviously dangerous and useless since a peerlist could end up
being totally empty.

The client then waits 40 minutes before the above steps are repeated.

Figure 10 summarizes the client thread operations.

Network strength
Remember that the goal of a Sality botnet is the distribution of malicious executables to the infected hosts. With
this goal in mind, let’s evaluate the security of the botnet to external and internal attacks.

External attacks
Contrary to other malicious botnets, this P2P network does not rely on a limited number of Command&Control
(C&C) servers to function. Since the botnet is decentralized, any peer can communicate with any peer, and any
peer is potentially a server. In this context, “taking down the C&C” means “taking down all the super peers”. Not
an unattainable goal, but realistically, cleaning up all compromised computers is an extremely difficult task to

 Figure 10

Flowchart of the client’s thread operations in a V3 peer implementation

Sality: Story of a peer-to-peer viral network

Page 13

Security Response

achieve. Remember that Sality is not a Trojan horse; it’s a virus. Cleaning 100% of files infected by a virus is one
of the most difficult challenges faced in our industry.

The true weak point lies in the downloading scheme: once the digitally signed URL Packs are installed, the pro-
grams pointed to by those URLs are downloaded and executed. These files are not digitally signed. This means
that an entity (government, competing hacker group, or someone else) managing to take control of one or more
of these DNS entries and able to replace the original executable by their own, can take control of the entire bot-
net.

Internal attacks
Let’s examine attacks from the point of view of a rogue peer, that is, a peer joining a botnet but not adhering to
some or all of the protocol recommendations.

The Announcement and Promotion mechanism could be abused by a rogue peer to reply with High Peer IDs to
clients’ queries, but in turn, never relay their own coordinates. Replying with a High Peer ID, as explained earlier,
would essentially mean that the requesting peer would stop Announcement and Promotions queries, and would
rely on us to propagate their coordinates. In practice though, since connections to peers of the peerlist are
concurrent, chances that a rogue peer is contacted first and whose response would be the first processed, are
extremely low.

Moreover, the Announcement and Promotion mechanism cannot be used by a rogue peer to insert multiple coor-
dinates in the peerlist, such as (IP, port A), (IP, port B), etc, as the old port would be replaced by the new one.

The Peer Exchange mechanism could be abused to send junk coordinates or already known coordinates to the
requesting peer.

Can we fill a peer’s entire peerlist with junk using this method? Generally, no: when a peer receives the coordi-•	
nates of the new peer, existing coordinates will be overwritten only if their goodcount is negative. This means
that only those peers with negative goodcounts could be overwritten. If a rogue peer were to reply with semi-
junk coordinates, such as (known good IP, junk port), in the hope of replacing the port number of a matching
existing entry, this would not happen either: the old port would be kept.
After the insertion of junk coordinates, can those be propagated to other peers, via the Peer Exchange mecha-•	
nism? The simple answer is: no, since implementations make sure that only peers with a strictly positive good-
count are propagated.

The Pack Exchange mechanism could be abused by a rogue peer, which would reply with the requesting client’s
Sequence ID instead of the newer one. In effect, this would only slow down the propagation of a newer URL Pack
to this client.

The Pack Exchange mechanism is immune to replay attacks, thanks to the Sequence ID. (Note to cautious read-
ers: the Sequence ID contained in a URL Pack is comprised in the data being digitally signed.)

The server is also immune to goodcount manipulation of the peerlist. For instance, one rogue peer forging pack-
ets that could seemingly originate from known good peers (present in the server’s peerlist) but malformed, in the
hope of negatively impacting their goodcounts, would not succeed. The reason is simple: the server thread does
not increase or decrease goodcounts of the peerlist, only the client thread does. (This is standard server-side
security: a server should never trust client’s data before it’s validated.)

Another aspect that should not be overlooked regards implementation errors. Various implementations of the
server and client routines were studied and appeared to be well coded and immune to buffer or integer over-
flows that would have allowed exploitation and, potentially, compromising the botnet. There is no evidence that
flawed implementations are not present in the wild.

Conclusion
The protocol implemented in V3 clients appears to be well thought. It seems that no single rogue peer could
seriously destabilize the botnet. Despite the strength of the P2P protocol, the V3 network suffers from two major
weaknesses related to the URL download scheme, as highlighted in the External attacks section:

Sality: Story of a peer-to-peer viral network

Page 14

Security Response

The URL constitutes the unique download point.•	
The executables are not verified before being installed.•	

This second weakness is critical, and certainly was a big motivation for the authors to create version 4.

Review of the V4 network
Version 4 of the protocol fixed the above issues:

The executables are digitally signed, and verified using the same key used to validate the URL Packs.•	
The URLs no longer are the only way to download these additional executables: each super peer now also •	
starts a TCP server, used to exchange files directly between peers (EXE Packs). These packs are digitally
signed.

On top of that, the authors decided to use a 2048-bit long RSA key to better secure their network. A binary dump
of this key can be found in Annex B.

Direct executable exchange
The transfer of EXE Packs takes place over TCP, for reliability reasons. (Other, well-known P2P networks also use
a similar scheme: UDP for network signaling, TCP for data exchange.) The TCP port chosen for the exchange is:
“chosen UDP port” + 19. If this port is used by another process, the EXE Packs delivery mechanism will simply
not work.

Two Sequence IDs are used: the original URL Pack Sequence ID, and the new EXE Pack Sequence ID.

The EXE Pack exchange takes place when the response to a URL Pack exchange query by a client results in the
server responding that they have the same pack (i.e., same Sequence ID.) In this case, the client will interrogate
the same server, this time asking for its EXE Pack Sequence ID, which might be different. If so, the EXE Pack
exchange will take place.

Figure 11 illustrates the difference between a V3 and V4 implementation of the protocol. The red area highlights
how the EXE Pack distribution functionalities fit into the old scheme.

 Figure 11

Flowchart of the client’s thread operations in a V4 peer implementation

Sality: Story of a peer-to-peer viral network

Page 15

Security Response

An EXE Pack has the following structure (note the similarities with a URL Pack):

Size and CRC•	
Digital signature•	
Sequence ID•	
Number of executables•	
Encrypted executables•	

Executables verification
The executables pointed by the URLs are also signed. The digital signature, located after the ASCII marker
“e#o203kjl,!”, is verified before the file is executed.

Conclusion
Version 4 of the protocol is undoubtedly more secure than version 3. Two major weaknesses were fixed and there
is no obvious way to destabilize or take control of this network. Implementation flaws are not to be neglected.
Another approach, outside the scope of this paper, may involve a cluster of rogue super peers.

Metrics and Estimations
Prevalence

Figure 12 shows infection levels for the year 2011 to date, for the detection dubbed W32.Sality.AE, which de-
tects most of the active variants. The graph was produced using in-field telemetry from Symantec products. The
numbers represent daily detection counts.

Figure 13 shows the number of Windows platforms impacted by W32.Sality.AE, again using in-field telemetry
reported by Symantec products.

 Figure 12

W32.Sality.AE infection levels for 2011 to date

 Figure 13

Number of Windows platforms impacted by W32.Sality.AE

Sality: Story of a peer-to-peer viral network

Page 16

Security Response

While these two graphs only reflect a subset of the virus activity, they clearly establish the prevalence of Sality.

Estimation for V3
Figure 14 represents the number of active super peers collected by a rogue peer since March 1, 2011 to date.
Resolution = 1 minute. The number of super peers is steady and oscillates between 8,000 and 10,000.

Figure 15 illustrates the location of 80,000 unique IPs of super peers, gathered by a rogue peer in January 2011.
The countries mainly affected are Romania, India, and Brazil.

 Figure 14

Number of active super peers since March 1, 2011 to date

Figure 15

Version 3 super peers heatmap

Sality: Story of a peer-to-peer viral network

Page 17

Security Response

As of July 2011, on a daily basis, the rogue server communicates with more than a million unique IP addresses —
potentially a million peers.

Figure 16 illustrates the location of 531,183 of such IP addresses collected on July 19, 2011.

Estimation for V4
Figure 17 represents the number of active super peers collected by a rogue peer since March 1, 2011 to date.
Resolution = 1 minute. The number of super peers increased significantly in May, and is now well above 300.
This network remains more recent and much smaller in size than V3.

Figure 16

Version 3 all peers heatmap

Figure 17

Number of active super peers collected by a rogue peer

Sality: Story of a peer-to-peer viral network

Page 18

Security Response

Conclusion
When it comes to file infectors, Sality certainly stands out from the crowd. Its anti-security software mecha-
nisms coupled with a robust payload distribution scheme makes the threat efficient and resilient. As shown, the
largest Sality network, version 3, is prone to a major vulnerability. The advent of the improved and safer version
4 should be taken seriously.

Despite being one of the most prevalent threats nowadays, Sality has not received the coverage or attention
required to raise awareness and eventually create a momentum to seriously thwart the threat. Hundreds of
thousands of computers are infected. The malware distributed to these computers include things as “benign” as
spam generators, but also password stealers. In early 2011, one of the programs distributed was geared towards
Web credentials theft, with a special emphasis on Facebook and Google Blogger accounts. Tomorrow, the opera-
tors of the botnet could decide to steal banking information.

Sality: Story of a peer-to-peer viral network

Page 19

Security Response

Annex A
List of impacted security services

AVP; Agnitum Client Security Service; ALG; Amon monitor; aswUpdSv; aswMon2; aswRdr; aswSP; aswTdi; aswFsBlk;
acssrv; AV Engine; avast! iAVS4 Control Service; avast! Antivirus; avast! Mail Scanner; avast! Web Scanner; avast!
Asynchronous Virus Monitor; avast! Self Protection; AVG E-mail Scanner; Avira AntiVir Premium Guard; Avira AntiVir
Premium WebGuard; Avira AntiVir Premium MailGuard; BGLiveSvc; BlackICE; CAISafe; ccEvtMgr; ccProxy; ccSetMgr;
COMODO Firewall Pro Sandbox Driver; cmdGuard; cmdAgent; Eset Service; Eset HTTP Server; Eset Personal Firewall;
F-Prot Antivirus Update Monitor; fsbwsys; FSDFWD; F-Secure Gatekeeper Handler Starter; FSMA; Google Online Ser-
vices; InoRPC; InoRT; InoTask; ISSVC; KPF4; KLIF; LavasoftFirewall; LIVESRV; McAfeeFramework; McShield; McTask-
Manager; MpsSvc; navapsvc; NOD32krn; NPFMntor; NSCService; Outpost Firewall main module; OutpostFirewall;
PAVFIRES; PAVFNSVR; PavProt; PavPrSrv; PAVSRV; PcCtlCom; PersonalFirewal; PREVSRV; ProtoPort Firewall service;
PSIMSVC; RapApp; SharedAccess; SmcService; SNDSrvc; SPBBCSvc; SpIDer FS Monitor for Windows NT; SpIDer
Guard File System Monitor; SPIDERNT; Symantec Core LC; Symantec Password Validation; Symantec AntiVirus Defini-
tion Watcher; SavRoam; Symantec AntiVirus; Tmntsrv; TmPfw; UmxAgent; UmxCfg; UmxLU; UmxPol; vsmon; VSSERV;
WebrootDesktopFirewallDataService; WebrootFirewall; wscsvc; XCOMM

List of impacted security processes
AVPM.; A2GUARD; A2CMD.; A2SERVICE.; A2FREE; AVAST; ADVCHK.; AGB.; AKRNL.; AHPROCMONSERVER.; AIRD-
EFENSE; ALERTSVC; AVIRA; AMON.; TROJAN.; AVZ.; ANTIVIR; APVXDWIN.; ARMOR2NET.; ASHAVAST.; ASHDISP.;
ASHENHCD.; ASHMAISV.; ASHPOPWZ.; ASHSERV.; ASHSIMPL.; ASHSKPCK.; ASHWEBSV.; ASWUPDSV.; ASWSCAN;
AVCIMAN.; AVCONSOL.; AVENGINE.; AVESVC.; AVEVAL.; AVEVL32.; AVGAM; AVGCC.AVGCHSVX.; AVGCSRVX.; AVGN-
SX.; AVGCC32.; AVGCTRL.; AVGEMC.; AVGFWSRV.; AVGNT.; AVCENTER; AVGNTMGR; AVGSERV.; AVGTRAY.; AVGUARD.;
AVGUPSVC.; AVGWDSVC.; AVINITNT.; AVKSERV.; AVKSERVICE.; AVKWCTL.; AVP.; AVP32.; AVPCC.; AVAST; AVSERVER.;
AVSCHED32.; AVSYNMGR.; AVWUPD32.; AVWUPSRV.; AVXMONITOR; AVXQUAR.; BDSWITCH.; BLACKD.; BLACKICE.;
CAFIX.; BITDEFENDER; CCEVTMGR.; CFP.; CFPCONFIG.; CCSETMGR.; CFIAUDIT.; CLAMTRAY.; CLAMWIN.; CUREIT;
DEFWATCH.; DRVIRUS.; DRWADINS.; DRWEB; DEFENDERDAEMON; DWEBLLIO; DWEBIO; ESCANH95.; ESCANHNT.;
EWIDOCTRL.; EZANTIVIRUSREGISTRATIONCHECK.; F-AGNT95.; FAMEH32.; FILEMON; FIREWALL; FORTICLIENT;
FORTITRAY.; FORTISCAN; FPAVSERVER.; FPROTTRAY.; FPWIN.; FRESHCLAM.; EKRN.; FSAV32.; FSAVGUI.; FSBWSYS.;
F-SCHED.; FSDFWD.; FSGK32.; FSGK32ST.; FSGUIEXE.; FSMA32.; FSMB32.; FSPEX.; FSSM32.; F-STOPW.; GCAS-
DTSERV.; GCASSERV.; GIANTANTISPYWARE; GUARDGUI.; GUARDNT.; GUARDXSERVICE.; GUARDXKICKOFF.; HREG-
MON.; HRRES.; HSOCKPE.; HUPDATE.; IAMAPP.; IAMSERV.; ICLOAD95.; ICLOADNT.; ICMON.; ICSSUPPNT.; ICSUPP95.;
ICSUPPNT.; IPTRAY.; INETUPD.; INOCIT.; INORPC.; INORT.; INOTASK.; INOUPTNG.; IOMON98.; ISAFE.; ISATRAY.;
KAV.; KAVMM.; KAVPF.; KAVPFW.; KAVSTART.; KAVSVC.; KAVSVCUI.; KMAILMON.; MAMUTU; MCAGENT.; MCMNH-
DLR.; MCREGWIZ.; MCUPDATE.; MCVSSHLD.; MINILOG.; MYAGTSVC.; MYAGTTRY.; NAVAPSVC.; NAVAPW32.; NAV-
LU32.; NAVW32.; NEOWATCHLOG.; NEOWATCHTRAY.; NISSERV; NISUM.; NMAIN.; NOD32; NORMIST.; NOTSTART.;
NPAVTRAY.; NPFMNTOR.; NPFMSG.; NPROTECT.; NSCHED32.; NSMDTR.; NSSSERV.; NSSTRAY.; NTRTSCAN.; NTOS.;
NTXCONFIG.; NUPGRADE.; NVCOD.; NVCTE.; NVCUT.; NWSERVICE.; OFCPFWSVC.; OUTPOST; ONLINENT.; OPSSVC.;
OP_MON.; PAVFIRES.; PAVFNSVR.; PAVKRE.; PAVPROT.; PAVPROXY.; PAVPRSRV.; PAVSRV51.; PAVSS.; PCCGUIDE.;
PCCIOMON.; PCCNTMON.; PCCPFW.; PCCTLCOM.; PCTAV.; PERSFW.; PERTSK.; PERVAC.; PESTPATROL; PNMSRV.;
PREVSRV.; PREVX; PSIMSVC.; QUHLPSVC.; QHONLINE.; QHONSVC.; QHWSCSVC.; QHSET.; RFWMAIN.; RTVSCAN.;
RTVSCN95.; SALITY; SAPISSVC.; SCANWSCS.; SAVADMINSERVICE.; SAVMAIN.; SAVPROGRESS.; SAVSCAN.; SCAN-
NINGPROCESS.; SDRA64.; SDHELP.; SHSTAT.; SITECLI.; SPBBCSVC.; SPHINX.; SPIDERCPL.; SPIDERML.; SPIDERNT.;
SPIDERUI.; SPYBOTSD.; SPYXX.; SS3EDIT.; STOPSIGNAV.; SWAGENT.; SWDOCTOR.; SWNETSUP.; SYMLCSVC.; SYM-
PROXYSVC.; SYMSPORT.; SYMWSC.; SYNMGR.; TAUMON.; TBMON.; TMLISTEN.; TMNTSRV.; TMPROXY.; TNBUTIL.;
TRJSCAN.; VBA32ECM.; VBA32IFS.; VBA32LDR.; VBA32PP3.; VBSNTW.; VCRMON.; VPTRAY.; VRFWSVC.; VRMONNT.;
VRMONSVC.; VRRW32.; VSECOMR.; VSHWIN32.; VSMON.; VSSERV.; VSSTAT.; WATCHDOG.; WEBSCANX.; WINSSNO-
TIFY.; WRCTRL.; XCOMMSVR.; ZLCLIENT; ZONEALARM

List of filtered patterns in network packets
upload_virus; sality-remov; virusinfo.; cureit.; drweb.; onlinescan.; spywareinfo.; ewido.; virusscan.; windowsecurity.;
spywareguide.; bitdefender.; pandasoftware.; agnmitum.; virustotal.; sophos.; trendmicro.; etrust.com; symantec.;
mcafee.; f-secure.; eset.com; kaspersky

Sality: Story of a peer-to-peer viral network

Page 20

Security Response

Annex B
Here are the RSA public key dumps used by Sality networks V2, V3, and V4. Feel free to factorize these numbers.

Version 2
RSA1024, MD5•	
e= 65,537 (decimal)•	
m= CC 62 A5 D2 D7 8A E4 49 0A 56 F0 48 D8 98 22 FA 63 18 9C 39 5F A8 7C F0 CC 65 63 B9 DF CB DE 16 23 •	
E3 0A 51 62 33 4E 00 B1 D1 38 AB BD 49 90 E7 67 20 B1 53 F9 03 4B 8F 5A 47 F5 E1 D8 AD 51 C4 07 EC 8D
C6 E4 E7 49 64 30 4A 79 E6 50 EC E2 3E 2B 12 B6 FD C2 36 98 91 F7 BF DA A3 4B 6E 24 35 3C 2E 7C 81 08 EF
51 99 7F 83 E7 8C D5 9D 28 21 29 72 1C EE 99 97 DC E4 3B C5 53 DF 51 C1 27 63 (binary)

Version 3
RSA1024, MD5•	
e= 65,537 (decimal)•	
m= 99 65 40 34 CD AE 9D B3 AF F5 82 AD 8C 2E 63 51 E1 34 53 FA 47 54 E4 70 97 4C A5 3D 3C A3 9B 57 29 •	
02 49 89 46 4C F2 76 B1 AD 8E 79 5D B2 41 28 4F 2A A5 9A 13 18 C0 1D ED DA E4 52 98 16 7F B3 A9 D7 7A
E4 C4 6F 51 F6 38 FE A6 FB AD 8C 64 1D 23 B5 A4 9D 40 20 74 61 BE 81 C3 EB 3D 24 01 75 13 07 58 C5 F0
56 09 94 58 E7 6B C3 F3 8C 70 73 4E F5 0B 2D 88 0B 9A BD 18 E4 36 72 26 1A 32 9B (binary)

Version 4
RSA2048, MD5•	
e= 65,537 (decimal)•	
m= BB D2 96 8E ED 0B 93 8A 82 E4 E9 BC C3 C5 32 72 4C 08 AA 56 9F 2D 64 0F 1B 86 68 0E 2B 62 E9 C6 35 •	
6D 75 B6 32 2D 4F A8 B8 D9 2A 44 8B F0 7F E0 D9 8E BE 66 9D A6 7A 9A 6D E1 45 F1 D3 48 01 0D 39 2E 9D
2A 45 FB 0B FB 1D 96 F3 B7 4F 55 E5 E1 16 5B F7 A1 CC 7C 87 C0 C8 9C EF 4E CE 29 58 E2 99 BD 8A 7A 55
BE B4 1C D9 79 52 25 D8 28 86 7B 81 39 98 5F 2C 6F 14 BB A5 6B CE 44 E5 91 93 38 8B 9A C1 74 46 84 E1
26 EC 04 94 96 75 09 E3 B5 88 D6 08 F0 4A B7 84 D3 13 2F 00 CC D5 2A 8C 17 07 09 DE 6F B0 D3 D6 2B C6
A6 9D 38 18 8C 74 9D 86 16 D5 48 6E 97 32 DB E1 4E F8 04 A6 00 7C 16 2E 70 1C 23 37 DD 5A 52 76 62 70
D4 86 66 6E DF 0C E9 A1 68 F9 5E E8 DD 09 0C 02 7D 35 D0 54 E7 00 C0 14 9F CE 4A 9F F3 99 50 1A 0B CD
CC FF 05 B9 04 12 E2 11 76 2F FF A4 6E 64 18 E0 D0 7B 3B (binary)

About Symantec
Symantec is a global leader in

providing security, storage and
systems management solutions to

help businesses and consumers
secure and manage their information.

Headquartered in Moutain View, Calif.,
Symantec has operations in more

than 40 countries. More information
is available at www.symantec.com.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call
toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters

350 Ellis Street
Mountain View, CA 94043 USA

+1 (650) 527-8000
www.symantec.com

Copyright © 2011 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered

trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of

their respective owners.

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

Security Response

About the author
Nicolas Falliere is a Principal
Software Engineer at Symantec
Security Response specializing in malware analysis.

