#!/usr/bin/env python3 import numpy as np from collections import defaultdict from datetime import datetime from functools import reduce from node_ranking import ( page_rank, sensor_rank, find_rank, parse_csv, csv_loader, build_graph, Node, RankedNode, ) def load_data(path): data = defaultdict(list) with open(path, 'r') as f: for line in f.readlines(): when = datetime.strptime(line.split(',')[0]+'00', '%Y-%m-%d %H:%M:%S%z') data[when].append( parse_csv(line, source_ip_index=1, source_port_index=2, dest_ip_index=3, dest_port_index=4) ) return data churned_peers = 50 iterations = 5 def main(): initial_rank = 0.5 data = load_data('./part-dist-edges.csv') print(f'loaded data. {len(data.keys())} buckets') for bucket, edges in data.items(): edges = list(edges) print(f'bucket: {bucket}') print(f'edges: {len(edges)}') known = Node('34.204.196.211', 9796) known_r = RankedNode(known, initial_rank) g = build_graph(edges, initial_rank=initial_rank) cnt = 0 destinations = [] for node in g: destinations.append(node) cnt += 1 if cnt >= churned_peers: break for node in destinations: g.add_edge(known_r, node) count_map = {} for node in g: count_map[node] = len(list(g.successors(node))) sum_out = 0 for v in count_map.values(): sum_out += v min_out = min(count_map.items(), key=lambda kv: kv[1]) max_out = max(count_map.items(), key=lambda kv: kv[1]) nodes = len(g) initial_rank = 0.5 with open(f'./churn_rank/{churned_peers}_edges_{bucket.timestamp()}.txt', 'w') as out: table = [] pr_data = [] sr_data = [] for iteration in range(iterations): g = page_rank(g) avg_pr = reduce(lambda acc, n: acc + n.rank, g, 0.) / nodes # max_pr = max(g, key = lambda n : n.rank).rank max_pr = find_rank(g) percentiles = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99] perc = np.percentile(np.array(sorted(map(lambda n: n.rank, g))), percentiles) pr_data.append(f'PR: InitialRank: {initial_rank}, Iteration: {iteration}, Percentiles {percentiles}: {perc}') # print(f'InitialRank: {initial_rank}, Iteration: {iteration}, Avg. PR: {avg_pr}') # print(f'InitialRank: {initial_rank}, Iteration: {iteration}, max PR: {max_pr}') sr = sensor_rank(g) avg_sr = reduce(lambda acc, n: acc + n.rank, sr, 0.) / nodes # max_sr = max(sr, key = lambda n : n.rank).rank max_sr = find_rank(sr) perc = np.percentile(np.array(sorted(map(lambda n: n.rank, sr))), percentiles) sr_data.append(f'SR: InitialRank: {initial_rank}, Iteration: {iteration}, Percentiles {percentiles}: {perc}') # print(f'InitialRank: {initial_rank}, Iteration: {iteration}, Avg. SR: {avg_sr}') # print(f'InitialRank: {initial_rank}, Iteration: {iteration}, max SR: {max_sr}') table.append(f'{iteration+1} & {avg_pr:.8f} & {max_pr:.8f} & {avg_sr:.8f} & {max_sr:.8f} \\\\') # out.write(f'{iteration+1} & {avg_pr:.8f} & {max_pr:.8f} & {avg_sr:.8f} & {max_sr:.8f} \\\\\n') # with open(f'./{initial_rank}_{iteration+1}_pr.txt', 'w') as f: # for n in g: # f.write(f'{n.rank}' + '\n') # with open(f'./{initial_rank}_{iteration+1}_sr.txt', 'w') as f: # for n in sr: # f.write(f'{n.rank}' + '\n') avg_out = float(sum_out) / len(count_map.keys()) known_out = count_map[known_r] print(f'\tavg_out: {avg_out}') print(f'\tmin_out: {min_out}') print(f'\tmax_out: {max_out}') print(f'\tknown_out: {known} {known_out}') out.write(f'bucket: {bucket}\n') out.write(f'\tavg_out: {avg_out}\n') out.write(f'\tmin_out: {min_out}\n') out.write(f'\tmax_out: {max_out}\n') out.write(f'\tknown_out: {known} {known_out}\n') print() print() out.write('\n') out.write('\n') for row in table: print(row) out.write(f'{row}\n') print() print() out.write('\n') out.write('\n') for row in sr_data: print(row) out.write(f'{row}\n') print() print() out.write('\n') out.write('\n') for row in pr_data: print(row) out.write(f'{row}\n') print() print() print() print() if __name__ == "__main__": main()