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ABSTRACT

The ever-growing number of cyber attacks originating from botnets
has made them one of the biggest threat to the Internet ecosystem.
Especially P2P-based botnets like ZeroAccess and Sality require
special attention as they have been proven to be very resilient
against takedown attempts. To identify weaknesses and to prepare
takedowns more carefully, it is thus a necessity to monitor them
by crawling and deploying sensor nodes. This in turn provokes
botmasters to come up with monitoring countermeasures to protect
their assets. Most existing anti-monitoring countermeasures focus
mainly on the detection of crawlers and not on the detection of
sensors deployed in a botnet. In this paper, we propose two sensor
detection mechanisms called SensorRanker and SensorBuster. We
evaluate these mechanisms in two real world botnets, Sality and
ZeroAccess. Our results indicate that SensorRanker and SensorBuster
are able to detect up to 17 sensors deployed in Sality and four within
ZeroAccess.
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1 INTRODUCTION

Many cyber-crime activities such as Distributed Denial of Service
(DDoS) and banking credential thefts are executed using botnets
that consist of a multitude of malware-infected computers, so-called
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bots. Bots can be automatically updated and receive orders from
a botmaster. As botnets can generate high income, they represent
valuable assets to their botmasters. For the GameOver Zeus botnet,
officials estimated a total revenue of about $100 million USD [4].
Early botnets followed a centralized Command and Control (C2)
structure and used HTTP or Internet Relay Chat (IRC) servers
for their management. However, such a centralized architecture
represents a bottleneck and a Single Point of Failure (SPoF), as such,
these botnets can be easily taken down [16]. Recent botnets like
Sality [5], GameOver Zeus [2], or ZeroAccess (ZA) [18, 20] employ
a Peer-to-Peer (P2P) architecture that significantly impedes such
takedown attacks.

A takedown attack, e.g., a sinkholing of all bots [15], can only be
successful when all participating bots and their interconnectivity
are known. As a result, these botnets are constantly crawled [9] and
infiltrated via sensors [8] by diverse actors, e.g., researchers and law
enforcement agencies. Crawling allows to retrieve a graph of all su-
perpeers in the botnet, i.e., all nodes that are directly routable, but it
cannot identify nodes behind Network Address Translation (NAT)
devices. Sensor nodes, in contrast, cannot provide an interconnectiv-
ity graph, but allow to enumerate all bots in the botnet, including
those behind NAT devices. For this reason, they are important
for takedown operations, as they can provide a complete list of
participating bots. During a sinkholing attack, bots are tricked
into believing that all other bots are no longer responsive, except
designated sinkholing servers, i.e., a variant of sensor node. If the
attack is successful, the botmaster cannot communicate with his
bots anymore and thus loses control over the botnet.

To protect their assets, botmasters started to introduce additional
defense mechanisms against monitoring activities [1]. For example,
bots return a neighborlist of restricted size [10] or they employ
automatic blacklisting mechanisms [2], which exploits that cur-
rent crawlers can be easily identified based on their significantly
increased request frequency compared to other bots in the botnet.
While crawlers can be detected easily, countermeasures that fo-
cus on disclosing and/or blacklisting sensor nodes are rare [3]. As
sensor nodes are fundamental to prepare takedown attacks, we
anticipate that botmasters will put more attention and efforts to
detect and blacklist them in the future.
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As our main contribution in this paper, we present two sensor
detection mechanisms for botnets from the perspective of a bot-
master. We evaluate them by comparing it with our previous work
called LCC [3]. For that, we use two real-world datasets gathered
from our monitoring of the Sality [12] and ZA [18, 20] botnets. We
do acknowledge the possibility of the proposals in this paper to be
misused by future botnets to prevent monitoring. However, our
intentions were to explore the possible advancements of future
botnets and bring them to the view of researchers so that coun-
termeasures could be discovered before the future botnets start
implementing the proposed mechanisms.

The remainder of this paper is structured as follows: we present
background and related work on P2P botnets and existing botnet
monitoring mechanism in Section 2. Section 3 describes our ad-
vanced sensor detection mechanisms and Section 4 summarizes
our evaluation results on the efficiency of the proposed mecha-
nisms. Finally, Section 5 summarizes our contribution and lists
future work.

2 BACKGROUND AND RELATED WORK

In this section, we first present a general overview of P2P botnets
before describing two specific real-world P2P botnets, Sality and ZA.
Then, we describe the commonly utilized botnet monitoring mech-
anisms before summarizing the state of the art in anti-monitoring
mechanisms for sensor nodes.

2.1 P2P Botnets

P2P botnets utilize a Membership Maintenance (MM) mechanism to
ensure a connected botnet overlay to withstand node churn, i.e.,
bots joining and leaving the botnet. Besides bootstrapping newly
infected machines into the overlay, this mechanism also ensures
that a bot regularly replaces offline or unresponsive bots in its
Neighbor List (NL).

The maintenance of the NLs follows the periodic and botnet-
specific MM-cycle. Typically a cycle ranges within seconds, minutes,
and up to an hour. In each cycle, a bot iterates through all entries
in its NL and probes each neighbor for its responsiveness. Bots
are removed if they are unresponsive to several successive probing
attempts. If required, bots may also request the NL of their existing
neighbors to add additional bots to their NLs. In the following,
we describe the specific MM protocols of Sality and ZA that we
obtained by our own reverse-engineering efforts of the respective
malwares.

2.1.1  Sality. Each bot in Sality [12] maintains a NL with at
maximum 1,000 entries and a MM-cycle of 40 minutes. In each
MM-cycle, a bot probes all neighbors in its NL by sending them a
Hello message. Entries in the NL are marked as online if a valid reply
isreceived. If the number of entries in the NL is low at the beginning
of a MM-cycle, an additional NL Request message (NLgq) is sent to
all online neighbors to discover additional bots. Bots receiving a
NLReq will respond with a NL Reply (NLg.p) message containing
one randomly selected (online) bot from their NL.

2.1.2  ZeroAccess (ZA). Bots in ZA [18, 20] maintain three NLs.
The primary list contains at maximum 256 entries and the other
two can contain more than 16 million entries each. The MM is
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carried out every 256 seconds. In each MM-cycle, a bot sequentially
probes an entry from its primary list every one second with a NLgeq
message. For each received probe message NLgeg, a bot replies with
a NLgep message that includes its 16 most-recent entries from its
primary NL. Bots that sent a response are shifted to the top of the
primary NL.

2.2 Botnet Monitoring Mechanisms

Monitoring in P2P botnets is often conducted using specialized
mechanisms like crawlers and sensor nodes. Both mechanisms are
described in more detail in the following.

2.2.1 Crawlers. To enumerate the botnet, a crawler pretends to
be a bot with very few neighbors and requests NL entries of other
bots in the botnet. This presumes a seednode to start with, which is
often found in the malware binary. Starting with the seednode, a
crawler iteratively sends requests to bots and increases its knowl-
edge about the botnet with each reply. The goal of the crawler is
to obtain a near-complete snapshot of the botnet overlay by dis-
covering all participating bots as well as their interconnectivities.
However, crawling often fails to enumerate bots behind NAT, prox-
ies, or firewalls, which forms the majority of the botnet population
(60 — 90% according to [15]).

2.2.2 Sensor Nodes. In contrast to a crawler, a sensor node is
able to enumerate non-superpeers in botnets. Exploiting the boot-
strapping process, a sensor can be announced and popularized to
existing superpeers. Thereafter, whenever a bot requests additional
neighbors from one of these superpeers, it is likely that the sensor
is returned. Consequently, non-superpeers will include the sensor
into their NLs and regularly probe the sensor for its responsiveness.
Based on the received probing messages, a sensor can enumerate
both, superpeers and non-superpeers.

Therefore, sensors are required to be always active and respon-
sive to ensure they remain in the NLs of the bots. Moreover, the
high availability of a sensor also directly influences its popularity
[9], i.e., amount of bots that have the sensor in their NL. Superpeers
that are able to continuously and successfully verify a sensor’s
responsiveness, will continue to share the sensor’s information to
requesting bots, hence, improving the sensor’s coverage.

Sensors are also often used as sinkhole servers to takedown P2P
botnets. In sinkholing attacks, all entries within the NLs of bots
are invalidated such that only sinkhole servers are reachable to
the bots. Ultimately, sinkholing prevents botmasters and bots to
contact each other.

2.3 Anti-Monitoring Mechanisms For Sensors

Botnet monitoring activities and sinkholing attacks are a threat
for botnets. Thus, botmasters started to deploy anti-monitoring
mechanisms to impede monitoring activities. However, these mech-
anisms focus primarily on impeding crawling activities that can
easily be detected based on their contact frequency, as exploited by
the blacklisting mechanism of GameOver Zeus [15].

In contrast, sensor nodes are a passive method. They only react
or respond when they receive messages from bots. Their behavior
cannot be easily distinguished from popular superpeers that are
well-known within the overlay as well as having a high uptime [3].
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Hence, compared to crawlers, they represent a stealthier monitoring
approach [1].

There are also existing countermeasures to prevent sensors in
current P2P botnets. Most botnets, including Sality and ZA, have
IP-based filtering mechanisms. They prevent multiple sensors on
a single IP address being inserted into the NL of a bot. GameOver
Zeus filters more strictly and allows only one entry for each /20
subnet [2]. Bots in Sality apply a local reputation mechanism that
keeps track of the behavior of their neighbors. This mechanism
prevents quick-deployment of sensors, by preferring existing and
responsive neighbors over newly discovered ones. As for ZA, its
short MM-cycle ensures that all entries in its primary NL are probed
and cycled at a high rate. As a consequence, a sensor will loose its
popularity if it is not highly responsive.

In [3], we proposed the first sensor detection mechanism that
exploits graph-theoretic properties of a botnet to detect sensors.
This mechanism can distinguish sensors from bots using the Local
Clustering Coefficient (LCC) connectivity-metric. LCC exploits that
most botnets have a set of stable backbone nodes [9, 17], i.e., nodes
with high uptime. These nodes are well-connected among each
other and are also popular among other bots in the botnet. As such,
using the interconnectivity information of the bots in the botnet,
i.e., the crawl data, the LCC for each node is calculated to measure
how interconnected the neighbors of a node are. Based on LCC, it
is possible to identify sensors that have: 1) only other sensors in
their NL, 2) no neighbors, and 3) only non-existent neighbors, i.e,
spoofed entries. As this is the only prior work available, we will
compare LCC against our proposals in Section 4.

3 SENSOR DETECTION MECHANISMS

In this section, we propose two novel sensor detection mechanisms,
called SensorRanker and SensorBuster. These mechanisms can dis-
close sensors by analyzing the interconnectivity properties of bots.
The assumptions for this work are based on the related work pre-
sented in [3]. It is assumed that 1) at least one sensor is present
among the bots, 2) sensors aim to be responsive all the time, and 3)
sensors do not aid the botnet in any manner, i.e., including sharing
valid bots as neighbors or botmaster updates/commands. Next, we
introduce our formal botnet model and the proposed mechanisms.

3.1 Formal Botnet Model

A P2P botnet can be modeled as a directed graph G := (V,E),
where V is the set of all bots. To maintain a connected overlay,
each bot follows a MM mechanism and establishes neighborhood
relationships to a subset of peers. These connections E C V X V,
are represented as a set of directed edges (u, v) with u,v € V. The
neighborhood relationship, i.e., NL, of a peer v € V contains all
successors of v

succy = NLy, = {u|Vu € V : (v,u) € E,v # u}

that is the set of all bots that v has an outgoing connection to.
The set of bots that have bot v as their neighbor can be expressed
by the set of predecessors
pred, = {ulVu € V: (u,v) € E,v # u}

The NL can also be specifically expressed as NL, to reflect the
exact view of peer v at time ¢. A botmaster can retrieve the entire
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neighborlist NL!, of a bot v at time t using a single (or multiple)
request message req’,. Bots receiving this message respond with a
reply message rep’, that contains all of their neighbors. Also, the
responsiveness of a bot v at time t can be expressed as the ratio
of the number of received replies to the number of sent requests
between ¢ and t - t:

t

1
K= 3 0
<o 5 req)
T=t-9

Next, we introduce our sensor detection mechanisms.

3.2 SensorRanker

Our first sensor detection mechanism uses the PageRank algorithm
[13] to distinguish sensors from bots. The PageRank algorithm
returns the importance, i.e., popularity, of websites based on the
number of pages referring to them. Similar to botnets, the relation
of websites and hyperlinks can be modeled as directed graphs with
the websites as nodes and the hyperlinks as edges.

The PageRank algorithm assigns values in the range [0.0, 1.0],
where a higher value denotes higher rank or popularity of a node,
e.g., PRy, = 1.0. The values are calculated based on a node’s pre-
decessors pred,, and their respective ranks. In each iteration of
the algorithm, the rank of a node is distributed equally among all
its outgoing edges succy,. Therefore, the rank distributed over all
edges of a node v is expressed as edge-weight,, = %. Thus,
the PageRank value of a node is the sum of the edge-weights of all
its predecessors.

The concept of PageRank is directly applicable to the popularity
of bots in a P2P botnet. A bot that is known by many bots, has a large
amount of predecessors and thus a higher rank. Bots become widely
known and popular in the botnet when they have been available
and responsive for a long period. Sensors can usually be found
among the most responsive nodes in the botnet. However, they
cannot be easily distinguished from popular bots and popularity
alone is not an effective metric to distinguish them [1]. However,
when taking PageRank into consideration, the edge-weights on
outgoing edges should differ significantly between sensor nodes,
which either have none or few outgoing edges compared to benign
bots, i.e., not returning other bots as their neighbors. For this reason,
PageRank seems as a promising metric to disclose sensors.

However, due to heavy churn in P2P botnets, using the original
PageRank algorithm is not effective as it may accidentally assign un-
popular bots a high edge-weight. For instance, consider a scenario
where a bot has few but coincidentally high-ranked predecessors
in combination with very few successors. This node will appear to
have an abnormally high edge-weight. For this reason, we normal-
ize the edge-weight of a node v by multiplying it with its popularity
ratio, i.e., the fraction of predecessors over the total population. We
refer to this adapted PageRank algorithm as SensorRank and it is
defined as follows:

|pred, |
14
SensorRank represents the fraction of a bot’s PageRank that

is equally distributed among its neighbors. Although the values

SensorRank,, = edge-weight,, x

@)
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for sensors would be higher than for bots, we still need an auto-
matic method for sensor detection. For this, we utilize clustering
algorithms to group nodes according to their SensorRank values.
Sensors will be represented as outliers due to extreme SensorRank
values compared to regular bots (cf. Section 4).

3.3 SensorBuster

SensorBuster is our second proposal that utilizes the Strongly Con-
nected Component (SCC) connectivity metric [19] to detect sensors.
A SCC of a directed graph G is defined as a maximum set of nodes
C C V with a directed path between each pair of nodes (u,v) € C,
ie,u > vandv — u.

To be robust in the presence of churn, P2P botnets facilitate a
large number of connections between their bots to prevent segmen-
tation. For this reason, superpeers B C V often form a single and
large SCCs, we refer to it as the main SCC. A sensor would not
be part of this main SCC because it will not have any bots as its
successors (cf. Section 3), thus there is no path from the sensor back
into the main SCC. Even in the case of multiple colluding sensors
that are returning each other, they would only establish their own
SCCs that is different from the main SCC. As such, all nodes that
are not included in the main SCC are most likely sensors.

4 EVALUATION

In this section, we first describe the datasets utilized to evaluate
our proposed sensor detection mechanisms in comparison to the
LCC-approach [3] on two real world botnets: Sality and ZA. Then,
we elaborate the experimental setup of our evaluation and present
our findings.

Sanitized Selected
Sality | ZA | Sality | ZA
Total Bots 7,480 | 3,376 | 2,901 | 526

Hourly Avg. Bots | 1,227 | 152 839 | 141
Max. Neighbors 544 179 453 | 142
Min. Neighbors 0 0 0 0
Avg. Neighbors 308 102 297 97

Median Neighbors | 356 113 343 | 109

Table 1: Details of the datasets

4.1 Datasets

We obtained our dataset by continuously crawling the Sality and
ZA botnet at high-frequency using Strobo-Crawler [6] for a week
with a crawling frequency of one request every second for ZA and
12 requests every second for Sality.

Sality was crawled from 21st — 27th April 2016 and ZA was
crawled from 22nd - 28th February 2016. From the initial 22, 506
bots discovered in the Sality botnet, we pruned 3, 228 because they
never responded to any Hello message. Similarly, out of 84, 631 bots
discovered in the ZA botnet, we removed 81, 255, because they did
not respond to any request. The large amount of nodes removed
from the ZA dataset is mainly because ZA includes non-superpeers
in their NL; they are not reachable by crawlers. We provide details
of both sanitized datasets in Table 1.
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4.2 Experimental Setup

For the analysis of our detection mechanisms for sensors, we im-
plemented them in several Python scripts that use the NetworkX
[7] and scikit-learn [14] modules. The scripts implement our novel
mechanisms, SensorRanker and SensorBuster, as well as LCC[3].
The remainder of this subsection will provide a more detailed ex-
planation of our setup.

4.2.1 Selecting and preparing snapshots for evaluation. The NL-
reply mechanism that is adopted by both botnets prevents us from
obtaining the entire connectivity of a bot by a single request. More
details on the restriction mechanisms can be found in [5] and [12]
for Sality and ZA respectively. To address this, we utilized the NL
deduction technique introduced in [6] to infer the near-complete
snapshot of the botnet at a given point in time, i.e., NL!. Using this
technique, we derived hourly snapshots of the botnets. Furthermore,
based on the assumption that sensors are highly responsive, we
pick only the snapshot with the least nodes for each day.

A summary of the selected snapshots for each botnet is presented
in Table 1!. We use these snapshots as input to the detection mech-
anisms. From here onward, we refer to these selected snapshots as
the respective botnet dataset itself.

4.2.2  Establishing ground truth. To compare the performance
of the proposed mechanisms, we need to first identify sensors de-
ployed in a botnet. Since it is almost impossible to identify from
real-world botnets, we leverage the fact that the sensors do not
aid the botnet in any manner (cf. Section 3) and use it to identify
them. Similar to the work of Andriesse et al. [1], we use pro-
tocol anomalies to identify sensors that use incomplete/limited
(re-)implementation of the botnet protocol. For that, prior to crawl-
ing, we request the latest botmaster update or command from all
newly discovered bots. While regular bots are expected to return
the newest update available at them upon request, a sensor would
normallyrefuse to do so. Hence, we can use this observation to
approximate the ground truth.

While this method itself can be used as a detection mechanism, it
can be easily circumvented by replying with a corrupted message or
data. This will make it difficult to distinguish between deliberately
corrupted messages and those corrupted in network transit. We
acknowledge that this method is not perfect for establishing ground
truth, especially if a sensor does not follow our assumptions in
Section 3. However, given that to the best of our knowledge, sensors
have not yet been targeted by botmasters, this approach allows to
approximate the ground truth for the purpose of our evaluation.

4.2.3  Sanitizing churn affected nodes. Due to churn within a
botnet, artifacts might be present in the crawl data. This does
not only include offline bots that are returned by bots, but also
those that joined or left the botnet overlay during a snapshot. Such
artifacts may skew the accuracy of any detection mechanism that
relies on connectivity-specific metrics of bots. To address this,
we apply the responsiveness ratio Rg of bots (cf. Equation 1) to
handle the artifacts. Therefore, bots that have poor Rr below a
certain threshold Rt will remain in the dataset but ignored during

These snapshots are available at : https://github.com/botnet-research/sensor-buster
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classification. Sensors would not be flagged as artifacts as they
always aim to be responsive.

The responsiveness of bots in Sality is measured as ratio of the
number of replies over the number of sent Hello messages (cf. Sec-
tion 2.1.1). For ZA it is measured using the ratio of received replies
over the number of sent NLg.4 messages (cf. Section 2.1.2).

4.3 Results

In this subsection, we first present the results of our evaluation
on the baseline of total sensors present in both datasets. Then, we
present our parameter study analysis on the clustering algorithm
suitable for SensorRanker. Finally, we provide the results from our
comparative analysis of all three mechanisms. Please note that
due to space constraints, results for ZA are not discussed in detail.
Therefore, we summarize and present the results wherever possible.

4.3.1 Baseline information on present sensors. We utilize proto-
col anomalies to establish the ground truth for our evaluation, e.g.,
sensors not sharing botmaster updates when requested. We man-
ually verified all flagged nodes and were able to detect 17 unique
sensors in the Sality dataset and four in the ZA dataset.

Minimum Responsiveness Threshold, Ry >

Day | 00| 01 |02 ]03|04]|05|06]|07]08]09
16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15
17 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15
15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14
16 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14
16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 14
16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14
7 17 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 15 | 15
Table 2: Total sensors present in a particular day dependent
on Rt in the Sality dataset

Q|G| RN =

The detected number of sensors per day in dependence on dif-
ferent values of Rt for Sality is presented in Table 2. As for ZA,
four sensors were detected consistently throughout the seven days
regardless of the different values of Rt.

4.3.2  SensorRanker clustering algorithms. We evaluated the ef-
fectiveness of different clustering algorithms namely K-Means,
Gaussian Mixture Models, SpectralClustering, DBSCAN and Agglom-
erative Clustering in classifying sensors based on the SensorRank
values. The evaluation was conducted on both datasets with the
responsiveness threshold set to R > 0.0, i.e., bots that responded
to at least one message during our monitoring period. Although
all algorithms perform equally well on accurately detecting sensor
nodes in the Sality botnet, DBSCAN generates the highest number
of false positives. In contrast, Agglomerative Clustering generates
the least false positives. We repeated this evaluation on the ZA
dataset and found that contrary to Sality, DBSCAN is able to detect
all sensors with the least false positives. Based on the analysis,
Agglomerative Clustering and DBSCAN is used for Sality and ZA
respectively for the SensorRanker mechanism.

4.3.3 Sanitizing artifacts present in datasets. As artifacts could
adversely affect the performance of the detection mechanisms, we
investigated the influence of various values of Rr, i.e., between
0.0 and 0.9, on all three detection mechanisms using both datasets.
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Figure 1: Influence of artifacts to the detection performance
of all three mechanisms with varying values of RT between
0.0 to 0.9 in Sality dataset on Day 6

Figure 1 depicts the number of nodes classified as true positives by
the respective detection mechanisms along with the corresponding
false positives in dependence on different values of R for Day 6
in the Sality dataset. The total number of sensors present in the
dataset, i.e., 16, is indicated by a horizontal line in the plot.

The results of this analysis indicate that with increasing Rr, the
number of false positives decreases for both datasets. We also found
that SensorRanker is minimally affected by different values of Rt
and thus is nearly unaffected by the presence of artifacts. In com-
parison, the influence of artifacts on LCC is more significant. Please
note that with a selection of higher Rr, some highly-responsive
sensors are being wrongly-flagged as artifacts and ignored by the
detection mechanisms, e.g., at Ry > 0.7 for Day 6 in the Sality
dataset. Therefore, to increase the accuracy of LCC and Sensor-
Buster, we chose a threshold value of Rt = 0.4 for Sality. While
this threshold value prohibits us from detecting a particular sensor
on Days 2,4,6, and 7, we argue that sensors with very low uptimes,
i.e, Rg < 0.4, won’t be popular in the botnet and thus are not very
useful to the botmaster or the defender anyway. If such a sensor
becomes popular over time, it will eventually be picked up by the
detection mechanisms.

Further, a threshold of Rr = 0.2 is observed to be appropriate
for all detection mechanisms on the ZA dataset. We argue that
the disparity between the threshold values for Sality and ZA is a
direct result of the different MM-intervals of the botnets. A Sality
bot has a larger MM-interval compared to ZA, hence having a
higher probability of NL artifacts present in the form of stale or
unresponsive entries.

4.3.4  Performance comparison of all mechanisms. After obtain-
ing suitable values from the parameter study, we compared the
performance of all three detection mechanisms on both datasets
with R = 0.4 on Sality and Rt = 0.2 on ZA. Table 3 represents
the detection results of all three mechanisms on the Sality dataset
throughout the week. The evaluation indicate that both Sensor-
Buster and LCC miss out at most one sensor in any given day. This
particular sensor had a poor responsiveness ratio, i.e., Rg < 0.4.
Meanwhile, even though SensorRanker has one additional false
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SensorBuster | SensorRanker LCC
Day | TP | FP | FN | TP | FP | FN | TP | FP | FEN
1 16 9 0 15 5 1 16 | 10 0
2 16 10 1 15 6 2 16 10 1
3 15 8 0 14 4 1 15 | 11 0
4 15 | 10 1 14 6 2 15 | 16 1
5 16 9 0 15 9 1 16 | 13 0
6 15 7 1 15 6 1 15 | 10 1
7 16 | 14 1 16 | 11 1 16 | 18 1

Table 3: Performance comparison of all detection mecha-
nism with Rt = 0.4 on the Sality dataset

negative compared to the other two, it had fewer false positives
throughout the week. This particular false negative was a sensor-
variant node called BoobyTrap (BT) from our other work [11]. A
BT node is designed to have low popularity to detect crawlers that
attempt to contact all possible bots. Since SensorRanker relies upon
high popularity, this BT node was missed out. However, since the
characteristics of a BT node is similar to a sensor (cf. Section 3),
it should have been detected by the mechanism as a sensor. In
comparison, LCC performs worst among all mechanisms w.r.t. the
number of incurred false positives.

When evaluated on ZA, SensorBuster and LCC consistently de-
tected four sensors, whereas SensorRanker detected only three
sensors on each day. However, SensorRanker did not incur any
false positives, whereas LCC and SensorBuster incurred up to five
and four of them, respectively.

5 CONCLUSION

In this work, we proposed SensorRanker and SensorBuster, two
novel sensor detection mechanisms that are able to detect sensors
deployed in P2P botnets. We evaluated the mechanisms along with
the state of the art, LCC, on real world botnets, i.e., Sality and ZA.
We found that many sensors that are currently deployed in those
botnets are susceptible to the proposed detection mechanisms. In
particular, we were able to detect up to 17 sensors deployed in the
Sality botnet and four in the ZA botnet.

Our evaluation results in Section 4 indicated that both LCC and
SensorBuster mechanism are able to detect all sensors that were
flagged using our baseline approach. However, LCC is found to
be inferior to SensorBuster as it produces far more false positives.
Meanwhile, although SensorRanker was not able to detect all sen-
sors, it still detects most of them with the least number of false
positives compared to the other mechanisms. Therefore, a botmas-
ter would decide to deploy the SensorBuster mechanism if he is
concerned on detecting all sensors that are present in the botnet
and has some level of tolerance for false positives. However, if
avoiding false positives is the main concern, a botmaster would
most likely utilize SensorRanker instead.

From our evaluation results, we also noticed that contrary to the
understanding that deployed sensors would always try to be respon-
sive to probe messages from other bots, some sensors were found
to have poor responsiveness. We speculate that this may results
from network-specific issues, such as network traffic congestion,
or simply from poor implementations of the sensor mechanism
itself. However, as seen in the past, botmasters frequently attempt
to upgrade their botnets to impede botnet monitoring. As such, it is

S. Karuppayah et al.

just a matter of time before the proposed mechanisms are adopted
by the botmasters on existing and newer botnets. As future work,
we would like to investigate ways to evade the proposed methods
to provide an upper hand back to the defenders, i.e., researchers
and law enforcement agencies.
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