masterthesis/codes/node-ranking/rank_reduced.py
Valentin Brandl 0d216a53ff Foo
2022-04-19 18:38:01 +02:00

181 lines
5.8 KiB
Python

#!/usr/bin/env python3
import statistics
import multiprocessing
from random import sample
import glob
import reduce_edges
import rank_with_churn
from datetime import datetime
import json
from node_ranking import (
rank as rank_nr,
page_rank,
# sensor_rank,
find_rank,
parse_csv,
csv_loader,
build_graph,
Node,
RankedNode,
)
def sr(graph, node, number_of_nodes):
try:
return node.rank * (len(list(graph.predecessors(node))) / number_of_nodes)
except ZeroDivisionError as e:
print(f'{node=}, {number_of_nodes=}')
raise e
def sensor_rank(graph):
number_of_nodes = graph.number_of_nodes()
return rank_nr(
page_rank(graph),
lambda g, node: sr(g, node, number_of_nodes)
)
def find_known(g, known):
nodes = list(filter(lambda n: n.node == known.node, g.nodes()))
n = len(nodes)
assert n == 1
return nodes[0]
def known_out(g, known):
return len(list(g.successors(known)))
def known_in(g, known):
return len(list(g.predecessors(known)))
def high_succ(g, n, known):
result = []
counter = 0
# choose nodes with many successors to reduce pr
for node in sorted(g.nodes(), key=lambda node: len(list(g.successors(node))), reverse=True):
if node.node == known.node:
print('skipping known')
continue
if counter >= n:
break
counter += 1
result.append(node)
return result
def analyze(g):
known = find_known(g, rank_with_churn.KNOWN)
# avg_r = rank_with_churn.avg_without_known(g)
avg_in = rank_with_churn.avg_in(g)
kn_in = known_in(g, known)
kn_out = known_out(g, known)
d = list(map(lambda node: node.rank, g.nodes()))
mean = statistics.mean(d)
stddev = statistics.stdev(d)
return {
'known_rank': known.rank,
'known_in': kn_in,
'known_out': kn_out,
# 'avg_rank': avg_r,
'avg_in': avg_in,
'mean': mean,
'stdev': stddev,
}
def create_crawlers(graph, n_crawlers, n_edges):
nodes = list(filter(lambda n: n.node != rank_with_churn.KNOWN.node, graph.nodes()))
crawlers = []
for i in range(n_crawlers):
ip = f'0.0.0.{i+1}'
crawler = RankedNode(Node(ip, 1337), rank_with_churn.INITIAL_RANK)
crawlers.append(crawler)
candidates = sample(nodes, n_edges)
for candidate in candidates:
graph.add_edge(crawler, candidate)
return crawlers
def rank(path, added_percentage):
edges = reduce_edges.load_data(path)
g = build_graph(edges, initial_rank=rank_with_churn.INITIAL_RANK)
# edges = list(filter(lambda e: e[1] == rank_with_churn.KNOWN, g.edges()))
# for_removal = sample(edges, int(len(edges) * remove_edges_percentage))
# print(f'removing {len(for_removal)} incoming edges')
# for edge in for_removal:
# g.remove_edge(edge[0], edge[1])
n_known_in = len(list(filter(lambda e: e[1] == rank_with_churn.KNOWN, g.edges())))
# avg_out = rank_with_churn.avg_out(g)
churned_peers = int(n_known_in * added_percentage)
known_pred = len(list(g.predecessors(rank_with_churn.KNOWN)))
c_out = int(known_pred * added_percentage)
crawlers = create_crawlers(g, churned_peers, c_out)
print(f'{added_percentage=}, {churned_peers=}')
# assert added_percentage == 0 or churned_peers != 0
# if churned_peers > 0:
# # nodes = list(g.nodes())
# # destinations = sample(nodes, churned_peers)
# destinations = high_succ(g, churned_peers, rank_with_churn.KNOWN)
# print(f'!!!!!! adding destinations: {destinations}')
print(f'adding {len(crawlers)=} crawlers with {c_out=} successors')
for node in crawlers:
g.add_edge(rank_with_churn.KNOWN, node)
print('pr start')
g_pr = page_rank(page_rank(g))
print('sr start')
g_sr = sensor_rank(sensor_rank(g))
print('analyze pr start')
res_pr = analyze(g_pr)
print('analyze sr start')
res_sr = analyze(g_sr)
print('done!')
res = {'sr': res_sr, 'pr': res_pr}
return res
def main():
# pool = multiprocessing.Pool(processes=4)
params = []
for reduced_percentage in [0.0]: #in reduce_edges.percentages:
for file in glob.glob(f'./edges_reduced/{reduced_percentage:.02f}/*.txt'):
params.append([reduced_percentage, file])
# p = Proc(reduced_percentage, file)
# p.start()
# for added_percentage in reduce_edges.percentages:
# when = datetime.fromtimestamp(float(file.split('/')[-1][:-4]))
# print(f'{reduced_percentage=:.02f}, {added_percentage=:.02f}, {when=}')
# result = rank(file, added_percentage)
# with open(f'./data_reduced/{reduced_percentage:.02f}/{added_percentage:.02f}/{when.timestamp()}.json', 'w') as f:
# json.dump(result, f)
with multiprocessing.Pool(processes=8) as pool:
l_path_data = pool.map(wohoo, params)
for path_data in l_path_data:
for path, data in path_data.items():
with open(path, 'w') as f:
json.dump(data, f)
def wohoo(p):
reduced_percentage = p[0]
file = p[1]
path_data = {}
# ps = reduce_edges.percentages.copy()
ps = [0.3, 0.5, 0.75]
ps.append(0.1)
ps.append(1.0)
ps.append(1.2)
# ps.append(2.0)
for added_percentage in ps:
when = datetime.fromtimestamp(float(file.split('/')[-1][:-4]))
print(f'{reduced_percentage=:.02f}, {added_percentage=:.02f}, {when=}')
result = rank(file, added_percentage)
path = f'./data_reduced/{reduced_percentage:.02f}/{added_percentage:.02f}/{when.timestamp()}.json'
path_data[path] = result
# with open() as f:
# json.dump(result, f)
return path_data
if __name__ == '__main__':
main()