masterthesis/codes/plot/blub.py
2022-04-01 12:41:55 +02:00

68 lines
1.7 KiB
Python
Executable File

#!/usr/bin/env python3
import glob
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
def load(path):
data = []
for file in glob.glob(path):
with open(file, 'r') as f:
inp = f.readlines()
data.append((datetime.fromtimestamp(float(file[6:-4])), float(inp[1][10:-1])))
# data[datetime.fromtimestamp(float(file[6:-4]))] = float(inp[1][10:-1])
return sorted(data, key=lambda x: x[0])
def read(path):
data = []
with open(path, 'r') as f:
data.extend(map(float, f.readlines()))
return data
# ranks = [0.25, 0.5, 0.75]
# iterations = 5
# for rank in ranks:
# for iteration in range(iterations):
# count, bins, ignored = plt.hist(read(f'./{rank}_{iteration+1}_sr.txt'), 30)
# plt.xlabel('SensorRank')
# plt.ylabel('Peers')
# s = 's'
# e = ''
# plt.title(f'SensorRank distribution after {iteration+1} iteration{s if iteration+1 > 1 else e} with initial rank {rank}')
# plt.savefig(f'./{rank:.2f}_{iteration+1}_sr.png')
# plt.clf()
# plt.cla()
# count, bins, ignored = plt.hist(data, 30)
# # plt.show()
# # plt.imsave("", data)
# plt.xlabel('PageRank')
# plt.ylabel('peers')
# plt.title()
# plt.savefig('./0.25_5_sr.png')
def main():
data = load('./inp/*')
N = len(data)
# for x in data:
# print(x)
# exit(1)
fig, ax = plt.subplots(figsize=(8, 4))
ax.plot([v[0] for v in data], [v[1] for v in data])
# ax.plot([v[0] for v in data], [v[1] for v in data], 'o-')
ax.set_title('Average outgoing edges per peer per hour')
ax.set_ylim(ymin=0)
fig.autofmt_xdate()
# plt.show()
plt.savefig('./avg_out_edges_no_dot.png')
if __name__ == "__main__":
main()