notes/school/di-ma/uebung/10/10_2.tex

102 lines
2.6 KiB
TeX
Raw Permalink Normal View History

2019-01-08 15:14:11 +01:00
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{wasysym}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {10} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 10.2}
\begin{enumerate}[1.]
\item $a \equiv b (\mod m) \Rightarrow a^2 \equiv b^2 (\mod m)$
Beweis:
$a \equiv b \text{ mod m}$
$\Rightarrow a = b + k\cdot m, k \in \mathbb{Z}$
$\Rightarrow a^2 = (b+k\cdot m)^2 = b^2 + 2b\cdot k \cdot m + k^2 \cdot m^2 = b^2 + (2\cdot b \cdot k + k^2\cdot m)\cdot m$
$\Rightarrow a^2 \equiv b^2 \text{ mod m}$
q.e.d
\item $a^2 \equiv b^2 (\mod m) \Rightarrow a \equiv b (\mod m)$
Gegenbeispiel:
a $\equiv$ 2 mod 5 und b $\equiv$ -2 $\equiv$ 3 mod 5
Es gilt: $a^2 \equiv 2^2 \equiv 4 \equiv 3^2 \equiv b^2 \text{ mod } 5$.
Aber $a \not \equiv b \text{ mod } 5$ und
\item $a^2 \equiv b^2 (\mod m) \Rightarrow (a \equiv b (\mod m) \lor a \equiv -b (\mod m))$
Gegenbeispiel a=2, b=4 und m=12
Es gilt: $a^2 \text{ mod 12 } \equiv 2^2 \text{ mod 12 }\equiv 4 \text{ mod 12 } \equiv 4^2 \text{ mod 12 }\equiv b^2 \text{ mod 12 }$
Aber
$2 \not \equiv 4 \text{ mod 12}$ und
$2 \not \equiv -4 \text{ mod 12} \equiv 8 \text{ mod 12 }$
\item $a \equiv b (\mod m) \Rightarrow a^2 \equiv b^2 (\mod m^2)$
Gegenbeispiel a=4 b=9 und m=5, also $m^2=25$
$\Rightarrow a \equiv b \text{ mod 5}$
$\Rightarrow a^2 \equiv 16 \not \equiv 81 \equiv 6 \equiv b^2 \text{ mod 25}$
$\Rightarrow a^2 \not \equiv b^2 \text{ mod 25}$
\end{enumerate}
\end{document}