2018-10-13 13:23:37 +02:00
|
|
|
|
\documentclass[12pt,a4paper,german]{article}
|
|
|
|
|
\usepackage{url}
|
|
|
|
|
%\usepackage{graphics}
|
|
|
|
|
\usepackage{times}
|
|
|
|
|
\usepackage[T1]{fontenc}
|
|
|
|
|
\usepackage{ngerman}
|
|
|
|
|
\usepackage{float}
|
|
|
|
|
\usepackage{diagbox}
|
|
|
|
|
\usepackage[latin1]{inputenc}
|
|
|
|
|
\usepackage{geometry}
|
|
|
|
|
\usepackage{amsfonts}
|
|
|
|
|
\usepackage{amsmath}
|
|
|
|
|
\usepackage{csquotes}
|
|
|
|
|
\usepackage{graphicx}
|
|
|
|
|
\usepackage{epsfig}
|
|
|
|
|
\usepackage{paralist}
|
|
|
|
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
|
|
|
|
\def \name {Valentin Brandl} %
|
|
|
|
|
\def \matrikel {108018274494} %
|
|
|
|
|
% \def \pname {Vorname2 Nachname2} %
|
|
|
|
|
% \def \pmatrikel {Matrikelnummer2} %
|
2018-10-23 15:07:50 +02:00
|
|
|
|
\def \gruppe {Gruppe 193} %
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\def \uebung {1} %
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
|
|
% DO NOT MODIFY THIS HEADER
|
|
|
|
|
\newcommand{\hwsol}{
|
|
|
|
|
\vspace*{-2cm}
|
|
|
|
|
\noindent \matrikel \quad \name \hfill Gruppe:\gruppe \\
|
|
|
|
|
% \noindent \pmatrikel \quad \pname \\
|
|
|
|
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
%Import header
|
|
|
|
|
\hwsol
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section*{Aufgabe 2}
|
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
|
\item
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
|
A &\text{:}& 23 \to{} 0.02 \\
|
|
|
|
|
B &\text{:}& 5 \to{} 0.00 \\
|
|
|
|
|
C &\text{:}& 22 \to{} 0.02 \\
|
|
|
|
|
D &\text{:}& 8 \to{} 0.01 \\
|
|
|
|
|
E &\text{:}& 17 \to{} 0.02 \\
|
|
|
|
|
F &\text{:}& 2 \to{} 0.00 \\
|
|
|
|
|
G &\text{:}& 80 \to{} 0.07 \\
|
|
|
|
|
J &\text{:}& 66 \to{} 0.06 \\
|
|
|
|
|
K &\text{:}& 39 \to{} 0.04 \\
|
|
|
|
|
L &\text{:}& 47 \to{} 0.04 \\
|
|
|
|
|
M &\text{:}& 2 \to{} 0.00 \\
|
|
|
|
|
N &\text{:}& 17 \to{} 0.02 \\
|
|
|
|
|
O &\text{:}& 63 \to{} 0.06 \\
|
|
|
|
|
P &\text{:}& 80 \to{} 0.07 \\
|
|
|
|
|
Q &\text{:}& 62 \to{} 0.06 \\
|
|
|
|
|
R &\text{:}& 57 \to{} 0.05 \\
|
|
|
|
|
S &\text{:}& 136 \to{} 0.12 \\
|
|
|
|
|
T &\text{:}& 6 \to{} 0.01 \\
|
|
|
|
|
U &\text{:}& 57 \to{} 0.05 \\
|
|
|
|
|
V &\text{:}& 6 \to{} 0.01 \\
|
|
|
|
|
W &\text{:}& 76 \to{} 0.07 \\
|
|
|
|
|
X &\text{:}& 25 \to{} 0.02 \\
|
|
|
|
|
Y &\text{:}& 8 \to{} 0.01 \\
|
|
|
|
|
Z &\text{:}& 83 \to{} 0.08 \\
|
|
|
|
|
\text{\"A} &\text{:}& 43 \to{} 0.04 \\
|
|
|
|
|
\text{\"O} &\text{:}& 14 \to{} 0.01 \\
|
|
|
|
|
\text{\"U} &\text{:}& 28 \to{} 0.03 \\
|
|
|
|
|
\text{<EFBFBD>} &\text{:}& 18 \to{} 0.02 \\
|
|
|
|
|
sum &\text{:}& 1090
|
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
|
|
\item
|
|
|
|
|
\begin{displayquote}
|
|
|
|
|
gr<67>ndlich durchgecheckt steht sie da \\
|
|
|
|
|
und wartet auf den start - alles klar! \\
|
|
|
|
|
experten streiten sich um ein paar daten \\
|
|
|
|
|
die crew hat da noch ein paar fragen \\
|
|
|
|
|
doch der countdown l<>uft \\
|
|
|
|
|
\end{displayquote}
|
|
|
|
|
|
|
|
|
|
\item
|
|
|
|
|
\begin{tabular}{|c|c|}
|
|
|
|
|
\hline
|
|
|
|
|
von & zu \\\hline
|
|
|
|
|
A & f \\
|
|
|
|
|
B & <20> \\
|
|
|
|
|
C & g \\
|
|
|
|
|
D & j \\
|
|
|
|
|
E & <20> \\
|
|
|
|
|
F & x \\
|
|
|
|
|
G & n \\
|
|
|
|
|
J & i \\
|
|
|
|
|
K & m \\
|
|
|
|
|
L & c \\
|
|
|
|
|
M & <20> \\
|
|
|
|
|
N & v \\
|
|
|
|
|
O & d \\
|
|
|
|
|
P & r \\
|
|
|
|
|
Q & a \\
|
|
|
|
|
R & l \\
|
|
|
|
|
S & e \\
|
|
|
|
|
T & <20> \\
|
|
|
|
|
U & h \\
|
|
|
|
|
V & z \\
|
|
|
|
|
W & t \\
|
|
|
|
|
X & w \\
|
|
|
|
|
Y & p \\
|
|
|
|
|
Z & s \\
|
|
|
|
|
<09> & o \\
|
|
|
|
|
<09> & b \\
|
|
|
|
|
<09> & u \\
|
|
|
|
|
<09> & k \\
|
|
|
|
|
H/I & q/y \\
|
|
|
|
|
\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
|
|
|
|
|
|
Weder H noch I kommen im Ciphertext vor, daher ist es nicht m<>glich, die Substitution von H/I eindeutig zu
|
|
|
|
|
bestimmen. Da jedoch auch weder q noch y im Plaintext vorkommen, muss entweder $H \to q \text{ und } I \to y$
|
|
|
|
|
oder $H \to y \text{ und } I \to q$ gelten.
|
|
|
|
|
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\item $30! = \vert \{A,B,...Z,\text{<EFBFBD>},\text{<EFBFBD>},\text{<EFBFBD>},\text{<EFBFBD>}\} \vert!$ = 265252859812191058636308480000000
|
2018-10-13 13:23:37 +02:00
|
|
|
|
|
|
|
|
|
\item Name des Textes: Major Tom (v<>llig losgel<65>st) \\
|
|
|
|
|
Erscheinungsjahr: 1982
|
|
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
|
|
\section*{Aufgabe 3}
|
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
|
\item $2^{63} = 9,223,372,036,854,775,808$
|
|
|
|
|
\item $2^{63} * 0.03g = 276,701,161,105,643,260g \approx 276,701,161,106t$ \\
|
|
|
|
|
$277 \cdot 10^9 / 460 \cdot 10^6 \approx 602 \Rightarrow$ mehr als das 600-fache der j<>hrlichen Reisernte
|
|
|
|
|
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\item $2^{10} * 0.1mm = 102.4mm = 1.024m$
|
2018-10-13 13:23:37 +02:00
|
|
|
|
|
|
|
|
|
\item
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
|
2^n * 0.1mm &\geq{}& 1,000,000mm \\
|
|
|
|
|
2^n &\geq{}& 10000000 \\
|
|
|
|
|
n &\geq{}& 24
|
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
Man muss das Blatt 24 mal falten.
|
|
|
|
|
|
|
|
|
|
\item
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
|
2^n * 0.1mm &\geq{}& 384,400,000,000mm \\
|
|
|
|
|
2^n &\geq{}& 3,844,000,000,000 \\
|
|
|
|
|
n &\geq{}& 42
|
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
Man muss das Blatt 42 mal falten.
|
|
|
|
|
|
|
|
|
|
\item
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
|
2^n * 0.1mm &\geq{}& 9,460,730,472,580,800,000mm \\
|
|
|
|
|
2^n &\geq{}& 94,607,304,725,808,000,000mm \\
|
|
|
|
|
n &\geq{}& 67
|
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
Man muss das Blatt 67 mal falten.
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
|
|
\section*{Aufgabe 4}
|
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
|
\item $2^n$
|
|
|
|
|
|
|
|
|
|
\item $\frac{2^n}{2}$
|
|
|
|
|
|
|
|
|
|
\item Gerechnet mit $1y = 365d$
|
|
|
|
|
\begin{figure}[h]
|
|
|
|
|
\begin{tabular}{|l|l|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
\diagbox{Case}{$n$} & 80 & 112 & 192 \\\hline
|
|
|
|
|
Worst Case & $2.50 * 10^8y$ & $1.08 * 10^{18}y$ & $1.30 * 10^{42}y$ \\\hline
|
|
|
|
|
Average Case & $1.25 * 10^8y$ & $5.38 * 10^{17}y$ & $6.50 * 10^{41}y$ \\\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
|
\caption{GPU}
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
\begin{figure}[h]
|
|
|
|
|
\begin{tabular}{|l|l|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
\diagbox{Case}{$n$} & 80 & 112 & 192 \\\hline
|
|
|
|
|
Worst Case & $5.81 * 10^7y$ & $2.49 * 10^{17}y$ & $3.02 * 10^{41}y$ \\\hline
|
|
|
|
|
Average Case & $2.90 * 10^7y$ & $1.25 * 10^{17}y$ & $1.51 * 10^{41}y$ \\\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
|
\caption{Amazon Cloud}
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
\begin{figure}[h]
|
|
|
|
|
\begin{tabular}{|l|l|l|l|}
|
|
|
|
|
\hline
|
|
|
|
|
\diagbox{Case}{$n$} & 80 & 112 & 192 \\\hline
|
|
|
|
|
Worst Case & $3.41 * 10^7y$ & $1.46 * 10^{17}y$ & $1.77 * 10^{41}y$ \\\hline
|
|
|
|
|
Average Case & $1.70 * 10^7y$ & $7.32 * 10^{16}y$ & $8.85 * 10^{40}y$ \\\hline
|
|
|
|
|
\end{tabular}
|
|
|
|
|
\caption{FPGA}
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\item Unter Anwendung der Erkenntnisse aus~\ref{(e)}:
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\begin{eqnarray*}
|
|
|
|
|
n &=& 80 \\
|
|
|
|
|
n + w &=& 112 \\
|
|
|
|
|
w &=& 32 \\
|
2018-10-15 10:19:26 +02:00
|
|
|
|
t_x &=& \frac{2^{112} - 2^{80}}{r_x} \\
|
|
|
|
|
r_{GPU} &=& 15.3 * 10^7 \frac{k}{s} \\
|
|
|
|
|
r_{Amazon} &=& 66 * 10^7 \frac{k}{s} \\
|
|
|
|
|
r_{FPGA} &=& 11.25 * 10^8 \frac{k}{s} \\
|
|
|
|
|
&\Rightarrow{}& \\
|
|
|
|
|
t_{GPU} &=& 1.06 * 10^{18}y \\
|
|
|
|
|
t_{Amazon} &=& 2.49 * 10^{17}y \\
|
|
|
|
|
t_{FPGA} &=& 1.46 * 10^{17}y \\
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\item\label{(e)}
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\begin{itemize}
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\item $r$: Rechenleistung in $\frac{\text{Schl<EFBFBD>ssel}}{s}$
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\item $n$: Aktuelle Bit L<>nge der Schl<68>ssel
|
|
|
|
|
\item $w$: Verl<72>ngerung der Schl<68>ssell<6C>nge um $w$ Bit
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\item $t$: Gesucht: Wie viel langsamer der Angriff wird
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\end{itemize}
|
|
|
|
|
\begin{eqnarray*}
|
2018-10-15 10:19:26 +02:00
|
|
|
|
\frac{2^n}{r} + t &=& \frac{2^{n+w}}{r} \\
|
|
|
|
|
t &=& \frac{2^{n+w} - 2^n}{r} \\
|
|
|
|
|
t &=& \frac{2^n(2^w-1)}{r}
|
2018-10-13 13:23:37 +02:00
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
|
|
\item
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
|
183d &=& 4392h \\\\
|
|
|
|
|
\frac{4392}{2^n} &\leq{}& 1 \\
|
|
|
|
|
n &\geq{}& 13 \Rightarrow \text{ 13 Verdoppelungen der Rechenleistung} \\\\
|
|
|
|
|
13 * 18m &=& 234 m = 19.5y \approx 20y \\
|
|
|
|
|
1992 + 20 &=& 2012
|
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
|
|
Seit dem Jahr 2012 sollte es m<>glich sein, 50-bit Keys in weniger als 1 Stunde zu Bruteforcen.
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
|
|