notes/school/di-ma/uebung/11/11_1.tex

111 lines
3.9 KiB
TeX
Raw Normal View History

2019-01-15 15:40:03 +01:00
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{wasysym}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {11} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 11.1}
\begin{enumerate}[1.]
\item Sei $p$ prim:
\begin{align*}
(a + b)^p &\equiv a^p + b^p &\mod p
\end{align*}
\begin{align*}
(a + b)^p &\equiv \sum\limits^p_{k=0} \binom{p}{k} a^k b^{p-k} &\mod p \\
&\equiv a^p + b^p + \sum\limits^{p-1}_{k=1} \binom{p}{k} a^k b^{p-k} &\mod p \\
* &\equiv a^p + b^p &\mod p
\end{align*}
$*$: $\binom{p}{k} = p * \frac{(p-1)!}{k!(p-k)!}$
$p$ prim $\Rightarrow$ $ggT(k!(p-k!), p) = 1$ $\Rightarrow$ $\frac{(p-1)!}{k!(p-k)!} \in \mathbb{Z}_p$
$\Rightarrow$ $p | \binom{k}{p}$ für $1 \leq k \leq p-1$
$\Rightarrow$ $\sum\limits_{k=1}^{p-1} \binom{p}{k} a^k b^{p-k} \equiv 0 \mod p$
q.e.d.
\item Sei $a,b \in \mathbb{N}, c = ggT(a,b)$
\begin{align*}
\varphi(a * b) &= \varphi(a) * \varphi(b) * \frac{c}{\varphi(c)}
\end{align*}
Zu zeigen: $\varphi(a) * \varphi(b) = \varphi(ggT(a,b)) * \varphi(kgV(a,b))$
Seien $P'$ die gemeinsamen Primteiler von $a$ und $b$ und $A$ und $B$ die Mengen der disjunkten Primteiler von
$a$ und $b$.
\begin{align*}
\varphi(a) * \varphi(b) &= \prod\limits_{p \in P'} p^{(a_p - 1)(b_p -1)} (p-1)^2 * \prod\limits_{p \in A}
p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) \\
&= \prod\limits_{p \in P'} p^{(min(a_p,b_p)-1)(max(a_p,b_p)-1)} (p-1)^2 * \prod\limits_{p \in A}
p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) \\
&= \prod\limits_{p \in P'} p^{min(a_p,b_p)-1} (p-q) * \left(
\prod\limits_{p \in P'} p^{max(a_p,b_p)-1} (p-1) * \prod\limits_{p \in A}
p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) \right) \\
&= \varphi(ggT(a,b)) * \varphi(kgV(a,b)) \\
\\
\varphi(a * b) &= \varphi(a) * \varphi(b) * \frac{c}{\varphi(c)} \\
&= \varphi(ggT(a,b)) * \varphi(kgV(a,b)) * \frac{ggT(a,b)}{\varphi(ggT(a,b))} \\
&= \varphi(kgV(a,b)) * ggT(a,b) \\
&= \prod\limits_{p \in P'} p^{max(a_p,b_p)-1} (p-1) * \prod\limits_{p \in A}
p^{(a_p-1)} (p-1) * \prod\limits_{p \in B} p^{(b_p - 1)} (p-1) * \prod\limits_{p \in P'}
p^{min(a_p,b_p)} \\
&= \prod\limits_{p \in P'} p^{(a_p+b_p-1)} (p-1) * \prod\limits_{p \in A} p^{a_p-1} (p-1) *
\prod\limits_{p \in B} p^{b_p-1} (p-1) \\
&= \varphi(a*b)
\end{align*}
q.e.d.
\end{enumerate}
\end{document}