83 lines
2.0 KiB
TeX
83 lines
2.0 KiB
TeX
|
\documentclass[12pt,a4paper,german]{article}
|
||
|
\usepackage{url}
|
||
|
%\usepackage{graphics}
|
||
|
\usepackage{times}
|
||
|
\usepackage[T1]{fontenc}
|
||
|
\usepackage{ngerman}
|
||
|
\usepackage{float}
|
||
|
\usepackage{diagbox}
|
||
|
\usepackage[latin1]{inputenc}
|
||
|
\usepackage{geometry}
|
||
|
\usepackage{amsfonts}
|
||
|
\usepackage{amsmath}
|
||
|
\usepackage{csquotes}
|
||
|
\usepackage{graphicx}
|
||
|
\usepackage{epsfig}
|
||
|
\usepackage{paralist}
|
||
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
||
|
|
||
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
||
|
\def \name {Valentin Brandl} %
|
||
|
\def \matrikel {108018274494} %
|
||
|
\def \pname {Marvin Herrmann} %
|
||
|
\def \pmatrikel {108018265436} %
|
||
|
\def \gruppe {Mi 10-12 (Andre)}
|
||
|
\def \uebung {1} %
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
% DO NOT MODIFY THIS HEADER
|
||
|
\newcommand{\hwsol}{
|
||
|
\vspace*{-2cm}
|
||
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
||
|
\noindent \pmatrikel \quad \pname \\
|
||
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
%Import header
|
||
|
\hwsol
|
||
|
|
||
|
\section*{Aufgabe 1.1}
|
||
|
\begin{enumerate}[(a)]
|
||
|
\item
|
||
|
\begin{itemize}
|
||
|
\item Induktionsanfang:
|
||
|
\begin{eqnarray*}
|
||
|
H(n) = 2^n - 1 \\
|
||
|
n = 0 \Rightarrow 2^0 - 1 = 0 \\
|
||
|
n = 1 \Rightarrow 2^1 - 1 = 0 \\
|
||
|
n = 2 \Rightarrow 2^2 - 1 = 0
|
||
|
\end{eqnarray*}
|
||
|
\item Induktionsvoraussetzung:
|
||
|
|
||
|
$H(n) = 2^n - 1$ mit $n \in \mathbb{N}$
|
||
|
|
||
|
\item Induktionsbehauptung:
|
||
|
|
||
|
Zu zeigen, dass IV auf f\"ur $(n+1)$ gilt.
|
||
|
|
||
|
\item Induktionsschritt:
|
||
|
|
||
|
Algorithmus f\"ur $(n+1)$:
|
||
|
\begin{itemize}
|
||
|
\item $n$ Scheiben auf Hilfsstab legen ($2^n - 1$ Z\"uge)
|
||
|
\item $n+1$-te Scheibe auf Zielstab legen ($1$ Zug)
|
||
|
\item $n$ Scheiben von Hilfsstab auf Zielstab legen ($2^n - 1$ Z\"uge)
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
H(n+1) &=& (2^n - 1) + 1 + (2^n - 1) \\
|
||
|
&=& 2^n + 2^n - 1 \\
|
||
|
&=& 2^{n+1} - 1
|
||
|
\end{eqnarray*}
|
||
|
\end{itemize}
|
||
|
|
||
|
\item
|
||
|
\begin{eqnarray*}
|
||
|
\frac{2^{64} - 1}{60 \cdot 60 \cdot 24 \cdot 365} = 5,850 \cdot 10^{11} \approx 585\text{ Milliarden Jahre}
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\end{enumerate}
|
||
|
\end{document}
|
||
|
|