91 lines
2.4 KiB
TeX
91 lines
2.4 KiB
TeX
|
\documentclass[12pt,a4paper,german]{article}
|
||
|
\usepackage{url}
|
||
|
%\usepackage{graphics}
|
||
|
\usepackage{times}
|
||
|
\usepackage[T1]{fontenc}
|
||
|
\usepackage{ngerman}
|
||
|
\usepackage{float}
|
||
|
\usepackage{diagbox}
|
||
|
\usepackage[utf8]{inputenc}
|
||
|
\usepackage{geometry}
|
||
|
\usepackage{amsfonts}
|
||
|
\usepackage{amsmath}
|
||
|
\usepackage{cancel}
|
||
|
\usepackage{wasysym}
|
||
|
\usepackage{csquotes}
|
||
|
\usepackage{graphicx}
|
||
|
\usepackage{epsfig}
|
||
|
\usepackage{paralist}
|
||
|
\usepackage{tikz}
|
||
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
||
|
|
||
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
||
|
\def \name {Valentin Brandl} %
|
||
|
\def \matrikel {108018274494} %
|
||
|
\def \pname {Marvin Herrmann} %
|
||
|
\def \pmatrikel {108018265436} %
|
||
|
\def \gruppe {2 (Mi 10-12 Andre)}
|
||
|
\def \qname {Pascal Brackmann}
|
||
|
\def \qmatrikel {108017113834} %
|
||
|
\def \uebung {11} %
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
% DO NOT MODIFY THIS HEADER
|
||
|
\newcommand{\hwsol}{
|
||
|
\vspace*{-2cm}
|
||
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
||
|
\noindent \pmatrikel \quad \pname \\
|
||
|
\noindent \qmatrikel \quad \qname \\
|
||
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
%Import header
|
||
|
\hwsol
|
||
|
|
||
|
\section*{Aufgabe 11.3}
|
||
|
|
||
|
\begin{enumerate}[1.]
|
||
|
|
||
|
\item
|
||
|
\begin{alignat*}{6}
|
||
|
(2&x^3 && + 1&) / (3x^2 + x + 1) = \frac{2}{3}x - \frac{2}{9} \\
|
||
|
-(2&x^3 + \frac{2}{3}&x^2 + \frac{2}{3}&x) \\ \cline{1-4}
|
||
|
(& -\frac{2}{3}&x^2 - \frac{2}{3}&x + 1) \\
|
||
|
-(& -\frac{2}{3}&x^2 - \frac{2}{9}&x - \frac{2}{9}) \\\cline{1-4}
|
||
|
(-\frac{4}{9}&x + \frac{11}{9})
|
||
|
\end{alignat*}
|
||
|
|
||
|
Quotient: $\frac{2}{3}x - \frac{2}{9}$
|
||
|
|
||
|
Rest: $- \frac{4}{9}x + \frac{11}{9}$
|
||
|
|
||
|
\item
|
||
|
\begin{align*}
|
||
|
f(x) = 8x + 11 \\
|
||
|
g(x) = 12x^2 + 9x + 11 \\
|
||
|
f,g \in \mathbb{F}_{17}[x]
|
||
|
\end{align*}
|
||
|
|
||
|
\begin{alignat*}{3}
|
||
|
(12&x^2 + 9&x + 11&) / (8x+11) = 10x + 15 \\
|
||
|
-(12&x^2 + 8x &) \\ \cline{1-3}
|
||
|
&& x + 11& \\
|
||
|
- (&& x + 12&) \\ \cline{1-3}
|
||
|
&& 16&
|
||
|
\\
|
||
|
\\
|
||
|
\\
|
||
|
8&x + 11& / (16) = 9x + 6 \\
|
||
|
-(8&x) & \\ \cline{1-2}
|
||
|
& 11& \\
|
||
|
-(&11) \\ \cline{1-2}
|
||
|
0
|
||
|
\end{alignat*}
|
||
|
|
||
|
$\Rightarrow$ $ggT(f,g) = 16 = 1 * (12x^2 + 9x + 11) - (8x+11)(10x+15)$
|
||
|
|
||
|
\end{enumerate}
|
||
|
|
||
|
\end{document}
|