2018-10-27 16:57:32 +02:00
|
|
|
\documentclass[12pt,a4paper,german]{article}
|
|
|
|
\usepackage{url}
|
|
|
|
%\usepackage{graphics}
|
|
|
|
\usepackage{times}
|
|
|
|
\usepackage[T1]{fontenc}
|
|
|
|
\usepackage{ngerman}
|
|
|
|
\usepackage{float}
|
|
|
|
\usepackage{diagbox}
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
|
|
\usepackage{geometry}
|
|
|
|
\usepackage{amsfonts}
|
|
|
|
\usepackage{amsmath}
|
|
|
|
\usepackage{csquotes}
|
|
|
|
\usepackage{graphicx}
|
|
|
|
\usepackage{epsfig}
|
|
|
|
\usepackage{paralist}
|
|
|
|
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
|
|
|
|
|
|
|
|
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
|
|
|
|
\def \name {Valentin Brandl} %
|
|
|
|
\def \matrikel {108018274494} %
|
|
|
|
\def \pname {Marvin Herrmann} %
|
|
|
|
\def \pmatrikel {108018265436} %
|
|
|
|
\def \gruppe {2 (Mi 10-12 Andre)}
|
|
|
|
\def \uebung {2} %
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
% DO NOT MODIFY THIS HEADER
|
|
|
|
\newcommand{\hwsol}{
|
|
|
|
\vspace*{-2cm}
|
|
|
|
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
|
|
|
|
\noindent \pmatrikel \quad \pname \\
|
|
|
|
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
%Import header
|
|
|
|
\hwsol
|
|
|
|
|
|
|
|
\section*{Aufgabe 2.1}
|
|
|
|
\begin{enumerate}[1.]
|
|
|
|
\item Kekse $\widehat{=}$ Bälle (unterscheidbar, da \enquote{verschieden}), Portionen $\widehat{=}$ Urnen (nicht
|
|
|
|
unterscheidbar). $n = 9$, $k = 5$
|
|
|
|
|
|
|
|
Problem entspricht einer ungeordneten $k$-Mengenpartition, also $S_{n,k}$
|
|
|
|
|
2018-10-28 13:22:52 +01:00
|
|
|
\begin{tabular}{c|cccccccccc}
|
|
|
|
$n/k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\\hline
|
|
|
|
0 & 1 &&&&&&&&& \\
|
|
|
|
1 & 0 & 1 & & & & & & & & \\
|
|
|
|
2 & 0 & 1 & 1 & & & & & & & \\
|
|
|
|
3 & 0 &1 &3 &1 & & & & & & \\
|
|
|
|
4 & 0 &1 &7 &6 &1 & & & & & \\
|
|
|
|
5 & 0 &1 &15 &25 &10 &1 & & & & \\
|
|
|
|
6 & 0 &1 &31 &90 &65 &15 &1 & & & \\
|
|
|
|
7 & 0 &1 &63 &301 &350 &140 &21 &1 & & \\
|
|
|
|
8 & 0 &1 &127 &966 &1701 &1050 &266 &28 &1 & \\
|
|
|
|
9 & 0 &1 &255 &3025 &7770 &\underline{6951} &2646 &462 &36 &1 \\
|
|
|
|
\end{tabular}
|
|
|
|
|
2018-10-27 16:57:32 +02:00
|
|
|
\begin{eqnarray*}
|
|
|
|
S_{n,k} &=& S_{n-1,k-1} + k * S_{n-1,k} \text{ mit} \\
|
|
|
|
S_{0,0} &=& 1 \\
|
|
|
|
S_{n,n} &=& 1 \\
|
|
|
|
S_{n,1} &=& 1 \\
|
|
|
|
S_{n,0} &=& 0 \\\\
|
|
|
|
S_{9,5} &=& 6951
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\item Bälle weiterhin unterscheidbar, Urnen jetzt auch unterscheidbar $\Rightarrow$ geordnete Mengenpartition.
|
|
|
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
k! * S_{n.k} &=& 5! * S_{9,5} \\
|
|
|
|
&=& 120 * 6951 \\
|
|
|
|
&=& 834120
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\item Jetzt gilt Teller $\widehat{=}$ Ball, Keks $\widehat{=}$ Urne. $n = 5$, $k = 3$.
|
|
|
|
|
|
|
|
Urnen sind unterscheidbar, \enquote{fünfgangiges Menü} $\Rightarrow$ Bälle sind auch untescheidbar
|
|
|
|
|
|
|
|
\begin{eqnarray*}
|
|
|
|
n^{\underline{k}} &=& 5^{\underline{3}} \\
|
|
|
|
&=& 5 * 4 * 3 \\
|
|
|
|
&=& 60
|
|
|
|
\end{eqnarray*}
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
|