Add solution for dima u04

This commit is contained in:
Valentin Brandl 2018-11-12 14:40:31 +01:00
parent b59a93480b
commit 01daa4d8d6
No known key found for this signature in database
GPG Key ID: 30D341DD34118D7D
5 changed files with 640 additions and 0 deletions

View File

@ -0,0 +1,70 @@
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {4} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 4.1}
\begin{enumerate}[i)]
\item Je zwei Koten in $G$ sind durch genau einen Pfad miteinander verbunden.
$\Rightarrow G$ ist zusammenhängend $\Rightarrow G$ ist ein Baum (Lemma b) aus der Vorlesung)
$\Rightarrow$ i) $\equiv$ iii)
\item $G$ ist zusammenhängend und es gilt $|V| = |E| + 1$
\item $G$ besitzt keinen einfachen Kreis und es gilt $|V| = |E| + 1$
$|V| = |E| + 1 \Rightarrow |V| - |E| = 1 \Rightarrow G$ hat eine Zusammenhangskomponente $\Rightarrow G$ ist
zusammenhängend.
Kreisfrei und zusammenhängend $\Rightarrow G$ ist ein Baum
$\Rightarrow$ ii) $\equiv$ iii)
\end{enumerate}
Da i) $\equiv$ iii) und ii) $\equiv$ iii) $\Rightarrow$ i) $\equiv$ ii) $\equiv$ iii)
\end{document}

View File

@ -0,0 +1,129 @@
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {4} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 4.2}
\begin{enumerate}[1.]
\item Graph $G=(V,E)$ mit\\
Knotenmenge: $V=\{a,b,c,d,e,f\}$\\
Kantenmenge: $E=
\{
\{a,b\},
\{a,c\},
\{a,d\},
\{a,f\},
\{b,f\},
\{b,e\},
\{c,d\},
\{d,e\}
\}
$
\\
Adjazenz-Matrix:\\
\begin{tabular}{c|ccccccc}
& a & b & c & d & e & f \\
\hline
a & 0 & 1 & 1 & 1 & 0 & 1 \\
b & 1 & 0 & 0 & 0 & 1 & 1 \\
c & 1 & 0 & 0 & 1 & 0 & 0 \\
d & 1 & 0 & 1 & 0 & 1 & 0 \\
e & 0 & 1 & 0 & 1 & 0 & 0 \\
f & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{tabular}
\\
\\
Inzidenz-Matrix:\\
\begin{tabular}{c|ccccccccc}
a & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
b & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
c & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
d & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
e & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
f & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{tabular}
\item \begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (a) at (3,2) {a};
\node[draw, circle] (b) at (1,1) {b};
\node[draw, circle] (c) at (2,1) {c};
\node[draw, circle] (d) at (3,1) {d};
\node[draw, circle] (f) at (4,1) {f};
\node[draw, circle] (e) at (0,0) {e};
\draw (a)--(b);
\draw (a)--(c);
\draw (a)--(d);
\draw (a)--(f);
\draw (b)--(e);
\end{tikzpicture}
\\
$G \setminus \{\{b,f\},\{c,d\},\{d,e\}\}$
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (b) at (2,2) {b};
\node[draw, circle] (a) at (1,1) {a};
\node[draw, circle] (f) at (2,1) {f};
\node[draw, circle] (e) at (3,1) {e};
\node[draw, circle] (c) at (0,0) {c};
\node[draw, circle] (d) at (2,0) {d};
\draw (b)--(a);
\draw (b)--(f);
\draw (b)--(e);
\draw (a)--(c);
\draw (a)--(d);
\end{tikzpicture}
\\
$G \setminus \{\{a,f\},\{c,d\},\{d,e\}\}$
\end{enumerate}
\end{document}

View File

@ -0,0 +1,118 @@
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {4} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 4.3}
\begin{enumerate}[1.]
\item Graph $G=(V,E)$ mit\\
Knotenmenge: $V=\{1,2,3,4,5,6\}$\\
Kantenmenge: $E=
\{
(1,2),
(1,3),
(2,3),
(3,4),
(4,5),
(5,6),
(6,4)
\}$
\\
Adjazenz-Matrix:\\
\begin{tabular}{c|cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1 & 0 & 1 & 1 & 0 & 0& 0 \\
2 & 0 & 0 & 1 & 0 & 0& 0 \\
3 & 0 & 0 & 0 & 1 & 0& 0 \\
4 & 0 & 0 & 0 & 0 & 1& 0 \\
5 & 0 & 0 & 0 & 0 & 0& 1 \\
6 & 0 & 0 & 0 & 1 & 0& 0 \\
\end{tabular}
\\
Inzidenz-Matrix:\\
\begin{tabular}{c|ccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{tabular}
\item \begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (1) at (0,1) {1};
\node[draw, circle] (4) at (2,2) {4};
\node[draw, circle] (6) at (2,0) {6};
\node[draw, circle] (3) at (1,0) {3};
\draw [->]
(1) edge (3)
(3) edge (4)
(6) edge (4);
\end{tikzpicture}
\\
$V'=\{1,3,4,6\}$
\item \begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (1) at (0,0) {1};
\node[draw, circle] (3) at (1,0) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (3,0) {5};
\draw [->]
(1) edge (3)
(3) edge (4)
(4) edge (5);
\end{tikzpicture}
\\
$V'=\{1,3,4,5\}$
\end{enumerate}
\end{document}

View File

@ -0,0 +1,77 @@
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\usepackage{tikz}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \qname {Pascal Brackmann}
\def \qmatrikel {108017113834} %
\def \uebung {4} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\noindent \qmatrikel \quad \qname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 4.4}
Zu zeigen: Wenn ein Baum genau $k \geq 1$ Knoten vom Grad 4 enthält (außer Blätter), dann besitzt der Baum mindestens
$2 \cdot k + 2$ Blätter.\\
\\
IA: Ein Baum mit nur einem Knoten von Grad 4 muss 4 Blätter haben
\begin{tikzpicture}
\node[draw,circle] (1) at (2,1) {1};
\node[draw,circle] (2) at (0,0) {2};
\node[draw,circle] (3) at (1,0) {3};
\node[draw,circle] (4) at (3,0) {4};
\node[draw,circle] (5) at (4,0) {5};
\draw (1)--(2);
\draw (1)--(3);
\draw (1)--(4);
\draw (1)--(5);
\end{tikzpicture}
\\
$A(1) = 2 \cdot 1 + 2 = 4$\\
\\
\textbf{IV: $A(k) = 2 \cdot k +2$}\\
\\
IS: $k \rightarrow k+1$\\
Um einen Knoten mit Grad 4 hinzuzufügen, kann man nun eines der Blätter nehmen und drei Blätter anhängen. Man bekommt
also 3 Blätter hinzu, verliert aber auch eines, da dieses zum neuen Knoten wird.\\
\\
$A(k+1) = A(k) + 3 - 1 \overset{(IV)}{=} (2 \cdot k+2)+3-1$
$= 2 \cdot (k+1)+2$\\
q.e.d
\end{document}

View File

@ -0,0 +1,246 @@
\documentclass[10pt,a4paper]{article}
\usepackage[utf8x]{inputenc}
\usepackage{ucs}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{tikz}
\title{Blatt 04}
\begin{document}
\maketitle
\newpage
\section{Aufgabe 1}
TODO
\section{Aufgabe 2}
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (a) at (0,1) {a};
\node[draw, circle] (b) at (1,2) {b};
\node[draw, circle] (c) at (2,2) {c};
\node[draw, circle] (d) at (3,1) {d};
\node[draw, circle] (e) at (2,0) {e};
\node[draw, circle] (f) at (1,0) {f};
\draw (a)--(b);
\draw (a)--(c);
\draw (a)--(d);
\draw (a)--(f);
\draw (b)--(f);
\draw (b)--(e);
\draw (c)--(d);
\draw (d)--(e);
\end{tikzpicture}
\\
\subsection{1.)}
Graph $G=(V,E)$ mit\\
Knotenmenge: $V=\{a,b,c,d,e,f\}$\\
Kantenmenge: $E=
\{
\{a,b\},
\{a,c\},
\{a,d\},
\{a,f\},
\{b,f\},
\{b,e\},
\{c,d\},
\{d,e\}
\}
$
\\
Adjazens-Matrix:\\
\begin{tabular}{c|ccccccc}
& a & b & c & d & e & f \\
\hline
a & 0 & 1 & 1 & 1 & 0 & 1 \\
b & 1 & 0 & 0 & 0 & 1 & 1 \\
c & 1 & 0 & 0 & 1 & 0 & 0 \\
d & 1 & 0 & 1 & 0 & 1 & 0 \\
e & 0 & 1 & 0 & 1 & 0 & 0 \\
f & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{tabular}
\\
\\
Inz.-Matrix:\\
\begin{tabular}{c|ccccccccc}
a & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
b & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
c & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
d & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
e & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
f & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{tabular}
\subsection{2.)}
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (a) at (3,2) {a};
\node[draw, circle] (b) at (1,1) {b};
\node[draw, circle] (c) at (2,1) {c};
\node[draw, circle] (d) at (3,1) {d};
\node[draw, circle] (f) at (4,1) {f};
\node[draw, circle] (e) at (0,0) {e};
\draw (a)--(b);
\draw (a)--(c);
\draw (a)--(d);
\draw (a)--(f);
\draw (b)--(e);
\end{tikzpicture}
\\
$G \setminus \{\{b,f\},\{c,d\},\{d,e\}\}$
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (b) at (2,2) {b};
\node[draw, circle] (a) at (1,1) {a};
\node[draw, circle] (f) at (2,1) {f};
\node[draw, circle] (e) at (3,1) {e};
\node[draw, circle] (c) at (0,0) {c};
\node[draw, circle] (d) at (2,0) {d};
\draw (b)--(a);
\draw (b)--(f);
\draw (b)--(e);
\draw (a)--(c);
\draw (a)--(d);
\end{tikzpicture}
\\
$G \setminus \{\{a,f\},\{c,d\},\{d,e\}\}$
\section{Aufgabe 3}
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (1) at (0,1) {1};
\node[draw, circle] (2) at (1,2) {2};
\node[draw, circle] (4) at (2,2) {4};
\node[draw, circle] (5) at (3,1) {5};
\node[draw, circle] (6) at (2,0) {6};
\node[draw, circle] (3) at (1,0) {3};
\draw [->]
(1) edge (2)
(1) edge (3)
(2) edge (3)
(3) edge (4)
(4) edge (5)
(5) edge (6)
(6) edge (4);
\end{tikzpicture}
\subsection{1.)}
Graph $G=(V,E)$ mit\\
Knotenmenge: $V=\{1,2,3,4,5,6\}$\\
Kantenmenge: $E=
\{
(1,2),
(1,3),
(2,3),
(3,4),
(4,5),
(5,6),
(6,4)
\}$
\\
Adjazens-Matrix:\\
\begin{tabular}{c|cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1 & 0 & 1 & 1 & 0 & 0& 0 \\
2 & 0 & 0 & 1 & 0 & 0& 0 \\
3 & 0 & 0 & 0 & 1 & 0& 0 \\
4 & 0 & 0 & 0 & 0 & 1& 0 \\
5 & 0 & 0 & 0 & 0 & 0& 1 \\
6 & 0 & 0 & 0 & 1 & 0& 0 \\
\end{tabular}
\\
Inzid.-Matrix:\\
\begin{tabular}{c|ccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{tabular}
\subsection{2.)}
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (1) at (0,1) {1};
\node[draw, circle] (4) at (2,2) {4};
\node[draw, circle] (6) at (2,0) {6};
\node[draw, circle] (3) at (1,0) {3};
\draw [->]
(1) edge (3)
(3) edge (4)
(6) edge (4);
\end{tikzpicture}
\\
$V'=\{1,3,4,6\}$\\
\\
\subsection{3.)}
\begin{tikzpicture}
\def \n {5}
\def \radius {3cm}
\def \margin {8} % margin in angles, depends on the radius
\node[draw, circle] (1) at (0,0) {1};
\node[draw, circle] (3) at (1,0) {3};
\node[draw, circle] (4) at (2,0) {4};
\node[draw, circle] (5) at (3,0) {5};
\draw [->]
(1) edge (3)
(3) edge (4)
(4) edge (5);
\end{tikzpicture}
\\
$V'=\{1,3,4,5\}$\\
\section{Aufgabe 4}
Zu zeigen: Wenn ein Baum genau $k \geq 1$ Knoten vom Grad 4 enthält (außer Blätter), dann besitzt der Baum mindestenz $2 \cdot k + 2$ Blätter.\\
\\
IA: Ein Baum mit nur einem Knoten von Grad 4 muss 4 Blätter haben
\begin{tikzpicture}
\node[draw,circle] (1) at (2,1) {1};
\node[draw,circle] (2) at (0,0) {2};
\node[draw,circle] (3) at (1,0) {3};
\node[draw,circle] (4) at (3,0) {4};
\node[draw,circle] (5) at (4,0) {5};
\draw (1)--(2);
\draw (1)--(3);
\draw (1)--(4);
\draw (1)--(5);
\end{tikzpicture}
\\
$A(1) = 2 \cdot 1 + 2 = 4$\\
\\
\textbf{IV: $A(k) = 2 \cdot k +2$}\\
\\
IS: $k \rightarrow k+1$\\
Um einen Knoten mit Grad 4 hinzuzufügen, kann man nun eines der Blätter nehmen und drei Blätter anhängen. Man bekommt also 3 Blätter hinzu, verliert aber auch eines, da dieses zum neuen Knoten wird.\\
\\
$A(k+1) = A(k) + 3 - 1 \overset{(IV)}{=} (2 \cdot k+2)+3-1$
$= 2 \cdot (k+1)+2$\\
q.e.d
\end{document}