Add dima u02

This commit is contained in:
Valentin Brandl 2018-10-27 16:57:32 +02:00
parent cd542fcca6
commit e39bbdf827
No known key found for this signature in database
GPG Key ID: 30D341DD34118D7D
3 changed files with 258 additions and 0 deletions

View File

@ -0,0 +1,136 @@
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \uebung {2} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 2.1}
\begin{enumerate}[1.]
\item Kekse $\widehat{=}$ Bälle (unterscheidbar, da \enquote{verschieden}), Portionen $\widehat{=}$ Urnen (nicht
unterscheidbar). $n = 9$, $k = 5$
Problem entspricht einer ungeordneten $k$-Mengenpartition, also $S_{n,k}$
\begin{eqnarray*}
S_{n,k} &=& S_{n-1,k-1} + k * S_{n-1,k} \text{ mit} \\
S_{0,0} &=& 1 \\
S_{n,n} &=& 1 \\
S_{n,1} &=& 1 \\
S_{n,0} &=& 0 \\\\
S_{9,5} &=& 6951
\end{eqnarray*}
\item Bälle weiterhin unterscheidbar, Urnen jetzt auch unterscheidbar $\Rightarrow$ geordnete Mengenpartition.
\begin{eqnarray*}
k! * S_{n.k} &=& 5! * S_{9,5} \\
&=& 120 * 6951 \\
&=& 834120
\end{eqnarray*}
\item Jetzt gilt Teller $\widehat{=}$ Ball, Keks $\widehat{=}$ Urne. $n = 5$, $k = 3$.
Urnen sind unterscheidbar, \enquote{fünfgangiges Menü} $\Rightarrow$ Bälle sind auch untescheidbar
\begin{eqnarray*}
n^{\underline{k}} &=& 5^{\underline{3}} \\
&=& 5 * 4 * 3 \\
&=& 60
\end{eqnarray*}
\end{enumerate}
\section*{Aufgabe 2.2}
\begin{enumerate}[1.]
\item Zyklenzerlegung: $(1\ 2\ 4) (3) (5\ 9) (6) (7\ 8)$
2 Fixpunkte: $3$ und $6$
\item
\begin{eqnarray*}
s_{n.k} &=& s_{n-1,k-1} + (n-1)s_{n-1,k} \text{ mit} \\
s_{0,0} &=& 1 \\
s_{n,0} &=& 0 \\
s_{n,n} &=& 1 \\\\
s_{9,5} &=& 22449
\end{eqnarray*}
\end{enumerate}
\section*{Aufgabe 2.3}
\begin{enumerate}[1.]
\item
\begin{eqnarray*}
x_1 + x_2 + x_3 + x_4 + x_5 + x_6 &=& 67 \text{ mit } x_i \ge 0 \text{ für } 1 \le i \le 6 \\
\text{Normalisierung:} \\
\text{für } 1 \le i \le 3 \rightarrow x_i' &=& x_i - 1 \text{ (ungerade Zahlen werden gerade)} \\
\text{für } 4 \le i \le 6 \rightarrow x_i' &=& x_i \\
\Rightarrow x_1' + x_2' + x_3' + x_4' + x_5' + x_6' &=& 64 \\
\text{für } 1 \le i \le 6 \rightarrow y_i &=& \frac{x_i'}{2}
\text{ (Bedingung \enquote{alle Zahlen gerade} erfüllt)} \\
\Rightarrow y_1 + y_2 + y_3 + y_4 + y_5 + y_6 &=& 32 \\
\text{für } 1 \le i \le 6 \rightarrow z_i &=& y_i + 1 \\
\Rightarrow z_1 + z_2 + z_3 + z_4 + z_5 + y_6 &=& 38 \\\\
\Rightarrow \binom{n-1}{k-1} &=& \binom{37}{5} = 435897
\end{eqnarray*}
\item
\begin{eqnarray*}
P_{n,k} &=& P_{n-1,k-1} + P_{n-k,k} \text{ mit} \\
P_{n.0} &=& 0 \\
P_{n.n} &=& 1 \\
P_{n.1} &=& 1 \\\\
P_{10,4} &=& 9
\end{eqnarray*}
\end{enumerate}
\section*{Aufgabe 2.4}
\begin{itemize}
\item Nur Schritte nach rechts oder oben sind erlaubt
\item Insgesamt $n$ Schritte nach oben und $k$ Schritte nach rechts
\item $\Rightarrow \frac{(n + k)!}{n! k!} = \binom{n + k}{k}$
\end{itemize}
\end{document}

View File

@ -0,0 +1,86 @@
\documentclass[12pt,a4paper,german]{article}
\usepackage{url}
%\usepackage{graphics}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{ngerman}
\usepackage{float}
\usepackage{diagbox}
\usepackage[utf8]{inputenc}
\usepackage{geometry}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{csquotes}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{paralist}
\geometry{left=2.0cm,textwidth=17cm,top=3.5cm,textheight=23cm}
%%%%%%%%%% Fill out the the definitions %%%%%%%%%
\def \name {Valentin Brandl} %
\def \matrikel {108018274494} %
\def \pname {Marvin Herrmann} %
\def \pmatrikel {108018265436} %
\def \gruppe {2 (Mi 10-12 Andre)}
\def \uebung {2} %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DO NOT MODIFY THIS HEADER
\newcommand{\hwsol}{
\vspace*{-2cm}
\noindent \matrikel \quad \name \hfill \"Ubungsgruppe: \gruppe \\
\noindent \pmatrikel \quad \pname \\
\begin{center}{\Large \bf L\"osung f\"ur \"Ubung \# \uebung}\end{center}
}
\begin{document}
%Import header
\hwsol
\section*{Aufgabe 2.1}
\begin{enumerate}[1.]
\item Kekse $\widehat{=}$ Bälle (unterscheidbar, da \enquote{verschieden}), Portionen $\widehat{=}$ Urnen (nicht
unterscheidbar). $n = 9$, $k = 5$
Problem entspricht einer ungeordneten $k$-Mengenpartition, also $S_{n,k}$
\begin{eqnarray*}
S_{n,k} &=& S_{n-1,k-1} + k * S_{n-1,k} \text{ mit} \\
S_{0,0} &=& 1 \\
S_{n,n} &=& 1 \\
S_{n,1} &=& 1 \\
S_{n,2} &=& 2^{n-1} - 1 \\
S_{n,3} &=& \frac{1}{2}(3^{n-1} - 2^n + 1) \\
S_{n,0} &=& 0 \\\\
S_{9,5} &=& S_{8,4} + 5 * S_{8,5} \\
&=& (S_{7,3} + 4 * S_{7,4}) + 5 * (S_{7,4} + 5 * S_{7,5}) \\
&=& ((S_{6,2} + 3 * S_{6.3}) + 4 * (S_{6,3} + 4 * S_{6,4})) + 5 * ((S_{6,3} + 4 * S_{6,4}) + 5 *
(S_{6,4} + 5 * S_{6,5})) \\
&=& ((32 + 3 * 90) + 4*(90 + 4*(S_{5,3} + 4*S_{5,4}))) + 5 * ((90 + 4*(S_{5,3} + 4*S_{5,4})) \\
&&+ 5*((S_{5,3}+ 4*S_{5,4}) + 5*(S_{5,4} + 5*S_{5,5}))) \\
&=& (302 + 4*(90+4*(57 + 4*(S_{4,3} + 4*S_{4,4})))) \\
&&+ 5*((90+4*(57 + 4*(S_{4,3} + 4*S_{4,4}))) \\
&&+ 5*((57 + 4*(S_{4,3} + 4*S_{4,4})) + 5 * ((S_{4,3} + 4*S_{4,4}) + 5 * 1))) \\
&=& (302 + 4*(90 + 4*(57 + 4*(22 + 4*1)))) \\
&& + 5*((90 + 4*(57 + 4*(22 + 4*1)))) \\
&& + 5 * ((57 + 4*(22 + 4*1)) + 5*((22 + 4*1) + 5)) \\
&=& 3238 + 3670 + 1580 \\
&=& 8488
\end{eqnarray*}
\item Bälle weiterhin unterscheidbar, Urnen jetzt auch unterscheidbar $\Rightarrow$ geordnete Mengenpartition.
\begin{eqnarray*}
k! * S_{n.k} &=& 5! * S_{9,5} \\
&=& 120 * 8488 \\
&=& 1018560
\end{eqnarray*}
\item Jetzt gilt Teller $\widehat{=}$ Ball, Keks $\widehat{=}$ Urne. $n = 5$, $k = 3$.
Urnen sind unterscheidbar, \enquote{fünfgangiges Menü} $\Rightarrow$ Bälle sind auch untescheidbar
\end{enumerate}
\end{document}

View File

@ -0,0 +1,36 @@
#!/usr/bin/env python
def p(n,k):
if k == 0:
return 0
elif n == k or k == 1:
return 1
elif n < k:
return 0
else:
return p(n-1,k-1) + p(n-k,k)
def s(n,k):
if n == k:
return 1
elif k == 0:
return 0
elif n < k:
return 0
else:
return s(n-1,k-1) + (n-1)*s(n-1,k)
def S(n, k):
if n == k:
return 1
elif k == 1:
return 1
elif k == 0:
return 0
elif n < k:
return 0
else:
return S(n-1,k-1) + k * S(n-1,k)
# print(S(9,5))
print(p(10,4))