\documentclass[10pt,a4paper]{article} \usepackage[utf8x]{inputenc} \usepackage{ucs} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{graphicx} \usepackage{tikz} \title{Blatt 04} \begin{document} \maketitle \newpage \section{Aufgabe 1} TODO \section{Aufgabe 2} \begin{tikzpicture} \def \n {5} \def \radius {3cm} \def \margin {8} % margin in angles, depends on the radius \node[draw, circle] (a) at (0,1) {a}; \node[draw, circle] (b) at (1,2) {b}; \node[draw, circle] (c) at (2,2) {c}; \node[draw, circle] (d) at (3,1) {d}; \node[draw, circle] (e) at (2,0) {e}; \node[draw, circle] (f) at (1,0) {f}; \draw (a)--(b); \draw (a)--(c); \draw (a)--(d); \draw (a)--(f); \draw (b)--(f); \draw (b)--(e); \draw (c)--(d); \draw (d)--(e); \end{tikzpicture} \\ \subsection{1.)} Graph $G=(V,E)$ mit\\ Knotenmenge: $V=\{a,b,c,d,e,f\}$\\ Kantenmenge: $E= \{ \{a,b\}, \{a,c\}, \{a,d\}, \{a,f\}, \{b,f\}, \{b,e\}, \{c,d\}, \{d,e\} \} $ \\ Adjazens-Matrix:\\ \begin{tabular}{c|ccccccc} & a & b & c & d & e & f \\ \hline a & 0 & 1 & 1 & 1 & 0 & 1 \\ b & 1 & 0 & 0 & 0 & 1 & 1 \\ c & 1 & 0 & 0 & 1 & 0 & 0 \\ d & 1 & 0 & 1 & 0 & 1 & 0 \\ e & 0 & 1 & 0 & 1 & 0 & 0 \\ f & 1 & 1 & 0 & 0 & 0 & 0 \\ \end{tabular} \\ \\ Inz.-Matrix:\\ \begin{tabular}{c|ccccccccc} a & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ c & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ d & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ e & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ f & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ \end{tabular} \subsection{2.)} \begin{tikzpicture} \def \n {5} \def \radius {3cm} \def \margin {8} % margin in angles, depends on the radius \node[draw, circle] (a) at (3,2) {a}; \node[draw, circle] (b) at (1,1) {b}; \node[draw, circle] (c) at (2,1) {c}; \node[draw, circle] (d) at (3,1) {d}; \node[draw, circle] (f) at (4,1) {f}; \node[draw, circle] (e) at (0,0) {e}; \draw (a)--(b); \draw (a)--(c); \draw (a)--(d); \draw (a)--(f); \draw (b)--(e); \end{tikzpicture} \\ $G \setminus \{\{b,f\},\{c,d\},\{d,e\}\}$ \begin{tikzpicture} \def \n {5} \def \radius {3cm} \def \margin {8} % margin in angles, depends on the radius \node[draw, circle] (b) at (2,2) {b}; \node[draw, circle] (a) at (1,1) {a}; \node[draw, circle] (f) at (2,1) {f}; \node[draw, circle] (e) at (3,1) {e}; \node[draw, circle] (c) at (0,0) {c}; \node[draw, circle] (d) at (2,0) {d}; \draw (b)--(a); \draw (b)--(f); \draw (b)--(e); \draw (a)--(c); \draw (a)--(d); \end{tikzpicture} \\ $G \setminus \{\{a,f\},\{c,d\},\{d,e\}\}$ \section{Aufgabe 3} \begin{tikzpicture} \def \n {5} \def \radius {3cm} \def \margin {8} % margin in angles, depends on the radius \node[draw, circle] (1) at (0,1) {1}; \node[draw, circle] (2) at (1,2) {2}; \node[draw, circle] (4) at (2,2) {4}; \node[draw, circle] (5) at (3,1) {5}; \node[draw, circle] (6) at (2,0) {6}; \node[draw, circle] (3) at (1,0) {3}; \draw [->] (1) edge (2) (1) edge (3) (2) edge (3) (3) edge (4) (4) edge (5) (5) edge (6) (6) edge (4); \end{tikzpicture} \subsection{1.)} Graph $G=(V,E)$ mit\\ Knotenmenge: $V=\{1,2,3,4,5,6\}$\\ Kantenmenge: $E= \{ (1,2), (1,3), (2,3), (3,4), (4,5), (5,6), (6,4) \}$ \\ Adjazens-Matrix:\\ \begin{tabular}{c|cccccc} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 0 & 1 & 1 & 0 & 0& 0 \\ 2 & 0 & 0 & 1 & 0 & 0& 0 \\ 3 & 0 & 0 & 0 & 1 & 0& 0 \\ 4 & 0 & 0 & 0 & 0 & 1& 0 \\ 5 & 0 & 0 & 0 & 0 & 0& 1 \\ 6 & 0 & 0 & 0 & 1 & 0& 0 \\ \end{tabular} \\ Inzid.-Matrix:\\ \begin{tabular}{c|ccccccc} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \end{tabular} \subsection{2.)} \begin{tikzpicture} \def \n {5} \def \radius {3cm} \def \margin {8} % margin in angles, depends on the radius \node[draw, circle] (1) at (0,1) {1}; \node[draw, circle] (4) at (2,2) {4}; \node[draw, circle] (6) at (2,0) {6}; \node[draw, circle] (3) at (1,0) {3}; \draw [->] (1) edge (3) (3) edge (4) (6) edge (4); \end{tikzpicture} \\ $V'=\{1,3,4,6\}$\\ \\ \subsection{3.)} \begin{tikzpicture} \def \n {5} \def \radius {3cm} \def \margin {8} % margin in angles, depends on the radius \node[draw, circle] (1) at (0,0) {1}; \node[draw, circle] (3) at (1,0) {3}; \node[draw, circle] (4) at (2,0) {4}; \node[draw, circle] (5) at (3,0) {5}; \draw [->] (1) edge (3) (3) edge (4) (4) edge (5); \end{tikzpicture} \\ $V'=\{1,3,4,5\}$\\ \section{Aufgabe 4} Zu zeigen: Wenn ein Baum genau $k \geq 1$ Knoten vom Grad 4 enthält (außer Blätter), dann besitzt der Baum mindestenz $2 \cdot k + 2$ Blätter.\\ \\ IA: Ein Baum mit nur einem Knoten von Grad 4 muss 4 Blätter haben \begin{tikzpicture} \node[draw,circle] (1) at (2,1) {1}; \node[draw,circle] (2) at (0,0) {2}; \node[draw,circle] (3) at (1,0) {3}; \node[draw,circle] (4) at (3,0) {4}; \node[draw,circle] (5) at (4,0) {5}; \draw (1)--(2); \draw (1)--(3); \draw (1)--(4); \draw (1)--(5); \end{tikzpicture} \\ $A(1) = 2 \cdot 1 + 2 = 4$\\ \\ \textbf{IV: $A(k) = 2 \cdot k +2$}\\ \\ IS: $k \rightarrow k+1$\\ Um einen Knoten mit Grad 4 hinzuzufügen, kann man nun eines der Blätter nehmen und drei Blätter anhängen. Man bekommt also 3 Blätter hinzu, verliert aber auch eines, da dieses zum neuen Knoten wird.\\ \\ $A(k+1) = A(k) + 3 - 1 \overset{(IV)}{=} (2 \cdot k+2)+3-1$ $= 2 \cdot (k+1)+2$\\ q.e.d \end{document}